Metamath Proof Explorer


Theorem cdlemg16

Description: Part of proof of Lemma G of Crawley p. 116; 2nd line p. 117, which says that (our) cdlemg10 "implies (2)" (of p. 116). No details are provided by the authors, so there may be a shorter proof; but ours requires the 14 lemmas, one using Desargues's law dalaw , in order to make this inference. This final step eliminates the ( RF ) =/= ( RG ) condition from cdlemg12 . TODO: FIX COMMENT. TODO: should we also eliminate P =/= Q here (or earlier)? Do it if we don't need to add it in for something else later. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg16 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRF=RGKHLWHPA¬P˙WQA¬Q˙W
9 simpl21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRF=RGFT
10 simpl22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRF=RGGT
11 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRF=RGRF=RG
12 1 2 3 4 5 6 7 cdlemg15 KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGP˙FGP˙W=Q˙FGQ˙W
13 8 9 10 11 12 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRF=RGP˙FGP˙W=Q˙FGQ˙W
14 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRFRGKHLWHPA¬P˙WQA¬Q˙W
15 simpl2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRFRGFTGTPQ
16 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRFRG¬RF˙P˙Q
17 simpl32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRFRG¬RG˙P˙Q
18 16 17 jca KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRFRG¬RF˙P˙Q¬RG˙P˙Q
19 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRFRGRFRG
20 simpl33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRFRGFGP˙FGQP˙Q
21 1 2 3 4 5 6 7 cdlemg12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙W=Q˙FGQ˙W
22 14 15 18 19 20 21 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QRFRGP˙FGP˙W=Q˙FGQ˙W
23 13 22 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙QP˙FGP˙W=Q˙FGQ˙W