Description: Utility theorem to eliminate p,q when converting theorems with explicit f. TODO: fix comment. (Contributed by NM, 22-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemg2.b | |
|
cdlemg2.l | |
||
cdlemg2.j | |
||
cdlemg2.m | |
||
cdlemg2.a | |
||
cdlemg2.h | |
||
cdlemg2.t | |
||
cdlemg2ex.u | |
||
cdlemg2ex.d | |
||
cdlemg2ex.e | |
||
cdlemg2ex.g | |
||
cdlemg2ce.p | |
||
cdlemg2ce.c | |
||
Assertion | cdlemg2ce | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg2.b | |
|
2 | cdlemg2.l | |
|
3 | cdlemg2.j | |
|
4 | cdlemg2.m | |
|
5 | cdlemg2.a | |
|
6 | cdlemg2.h | |
|
7 | cdlemg2.t | |
|
8 | cdlemg2ex.u | |
|
9 | cdlemg2ex.d | |
|
10 | cdlemg2ex.e | |
|
11 | cdlemg2ex.g | |
|
12 | cdlemg2ce.p | |
|
13 | cdlemg2ce.c | |
|
14 | simp2 | |
|
15 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemg2cex | |
16 | 15 | 3ad2ant1 | |
17 | 14 16 | mpbid | |
18 | simp11 | |
|
19 | simp2l | |
|
20 | simp31 | |
|
21 | 19 20 | jca | |
22 | simp2r | |
|
23 | simp32 | |
|
24 | 22 23 | jca | |
25 | simp13 | |
|
26 | 18 21 24 25 13 | syl31anc | |
27 | simp33 | |
|
28 | 27 12 | syl | |
29 | 26 28 | mpbird | |
30 | 29 | 3exp | |
31 | 30 | rexlimdvv | |
32 | 17 31 | mpd | |