Metamath Proof Explorer


Theorem cdlemg2ce

Description: Utility theorem to eliminate p,q when converting theorems with explicit f. TODO: fix comment. (Contributed by NM, 22-Apr-2013)

Ref Expression
Hypotheses cdlemg2.b B=BaseK
cdlemg2.l ˙=K
cdlemg2.j ˙=joinK
cdlemg2.m ˙=meetK
cdlemg2.a A=AtomsK
cdlemg2.h H=LHypK
cdlemg2.t T=LTrnKW
cdlemg2ex.u U=p˙q˙W
cdlemg2ex.d D=t˙U˙q˙p˙t˙W
cdlemg2ex.e E=p˙q˙D˙s˙t˙W
cdlemg2ex.g G=xBifpq¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙p˙qιyB|tA¬t˙W¬t˙p˙qy=Es/tD˙x˙Wx
cdlemg2ce.p F=Gψχ
cdlemg2ce.c KHLWHpA¬p˙WqA¬q˙Wφχ
Assertion cdlemg2ce KHLWHFTφψ

Proof

Step Hyp Ref Expression
1 cdlemg2.b B=BaseK
2 cdlemg2.l ˙=K
3 cdlemg2.j ˙=joinK
4 cdlemg2.m ˙=meetK
5 cdlemg2.a A=AtomsK
6 cdlemg2.h H=LHypK
7 cdlemg2.t T=LTrnKW
8 cdlemg2ex.u U=p˙q˙W
9 cdlemg2ex.d D=t˙U˙q˙p˙t˙W
10 cdlemg2ex.e E=p˙q˙D˙s˙t˙W
11 cdlemg2ex.g G=xBifpq¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙p˙qιyB|tA¬t˙W¬t˙p˙qy=Es/tD˙x˙Wx
12 cdlemg2ce.p F=Gψχ
13 cdlemg2ce.c KHLWHpA¬p˙WqA¬q˙Wφχ
14 simp2 KHLWHFTφFT
15 1 2 3 4 5 6 7 8 9 10 11 cdlemg2cex KHLWHFTpAqA¬p˙W¬q˙WF=G
16 15 3ad2ant1 KHLWHFTφFTpAqA¬p˙W¬q˙WF=G
17 14 16 mpbid KHLWHFTφpAqA¬p˙W¬q˙WF=G
18 simp11 KHLWHFTφpAqA¬p˙W¬q˙WF=GKHLWH
19 simp2l KHLWHFTφpAqA¬p˙W¬q˙WF=GpA
20 simp31 KHLWHFTφpAqA¬p˙W¬q˙WF=G¬p˙W
21 19 20 jca KHLWHFTφpAqA¬p˙W¬q˙WF=GpA¬p˙W
22 simp2r KHLWHFTφpAqA¬p˙W¬q˙WF=GqA
23 simp32 KHLWHFTφpAqA¬p˙W¬q˙WF=G¬q˙W
24 22 23 jca KHLWHFTφpAqA¬p˙W¬q˙WF=GqA¬q˙W
25 simp13 KHLWHFTφpAqA¬p˙W¬q˙WF=Gφ
26 18 21 24 25 13 syl31anc KHLWHFTφpAqA¬p˙W¬q˙WF=Gχ
27 simp33 KHLWHFTφpAqA¬p˙W¬q˙WF=GF=G
28 27 12 syl KHLWHFTφpAqA¬p˙W¬q˙WF=Gψχ
29 26 28 mpbird KHLWHFTφpAqA¬p˙W¬q˙WF=Gψ
30 29 3exp KHLWHFTφpAqA¬p˙W¬q˙WF=Gψ
31 30 rexlimdvv KHLWHFTφpAqA¬p˙W¬q˙WF=Gψ
32 17 31 mpd KHLWHFTφψ