Metamath Proof Explorer


Theorem cdlemg2cex

Description: Any translation is one of our F s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf ? (Contributed by NM, 22-Apr-2013)

Ref Expression
Hypotheses cdlemg2.b B=BaseK
cdlemg2.l ˙=K
cdlemg2.j ˙=joinK
cdlemg2.m ˙=meetK
cdlemg2.a A=AtomsK
cdlemg2.h H=LHypK
cdlemg2.t T=LTrnKW
cdlemg2ex.u U=p˙q˙W
cdlemg2ex.d D=t˙U˙q˙p˙t˙W
cdlemg2ex.e E=p˙q˙D˙s˙t˙W
cdlemg2ex.g G=xBifpq¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙p˙qιyB|tA¬t˙W¬t˙p˙qy=Es/tD˙x˙Wx
Assertion cdlemg2cex KHLWHFTpAqA¬p˙W¬q˙WF=G

Proof

Step Hyp Ref Expression
1 cdlemg2.b B=BaseK
2 cdlemg2.l ˙=K
3 cdlemg2.j ˙=joinK
4 cdlemg2.m ˙=meetK
5 cdlemg2.a A=AtomsK
6 cdlemg2.h H=LHypK
7 cdlemg2.t T=LTrnKW
8 cdlemg2ex.u U=p˙q˙W
9 cdlemg2ex.d D=t˙U˙q˙p˙t˙W
10 cdlemg2ex.e E=p˙q˙D˙s˙t˙W
11 cdlemg2ex.g G=xBifpq¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙p˙qιyB|tA¬t˙W¬t˙p˙qy=Es/tD˙x˙Wx
12 2 5 6 7 cdlemg1cex KHLWHFTpAqA¬p˙W¬q˙WF=ιfT|fp=q
13 simplll KHLWHpAqA¬p˙W¬q˙WKHL
14 simpllr KHLWHpAqA¬p˙W¬q˙WWH
15 simplrl KHLWHpAqA¬p˙W¬q˙WpA
16 simprl KHLWHpAqA¬p˙W¬q˙W¬p˙W
17 simplrr KHLWHpAqA¬p˙W¬q˙WqA
18 simprr KHLWHpAqA¬p˙W¬q˙W¬q˙W
19 eqid ιfT|fp=q=ιfT|fp=q
20 1 2 3 4 5 6 8 9 10 11 7 19 cdlemg1b2 KHLWHpA¬p˙WqA¬q˙WιfT|fp=q=G
21 13 14 15 16 17 18 20 syl222anc KHLWHpAqA¬p˙W¬q˙WιfT|fp=q=G
22 21 eqeq2d KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qF=G
23 22 pm5.32da KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=q¬p˙W¬q˙WF=G
24 df-3an ¬p˙W¬q˙WF=ιfT|fp=q¬p˙W¬q˙WF=ιfT|fp=q
25 df-3an ¬p˙W¬q˙WF=G¬p˙W¬q˙WF=G
26 23 24 25 3bitr4g KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=q¬p˙W¬q˙WF=G
27 26 2rexbidva KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qpAqA¬p˙W¬q˙WF=G
28 12 27 bitrd KHLWHFTpAqA¬p˙W¬q˙WF=G