Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg2inv.h |
|
2 |
|
cdlemg2inv.t |
|
3 |
|
cdlemg2j.l |
|
4 |
|
cdlemg2j.j |
|
5 |
|
cdlemg2j.a |
|
6 |
|
cdlemg2j.m |
|
7 |
|
cdlemg2j.u |
|
8 |
|
simp1 |
|
9 |
|
simp2r |
|
10 |
|
simp2l |
|
11 |
|
simp3 |
|
12 |
|
eqid |
|
13 |
1 2 3 4 5 6 12
|
cdlemg2k |
|
14 |
8 9 10 11 13
|
syl121anc |
|
15 |
|
simp1l |
|
16 |
|
simp2ll |
|
17 |
3 5 1 2
|
ltrnat |
|
18 |
8 11 16 17
|
syl3anc |
|
19 |
|
simp2rl |
|
20 |
3 5 1 2
|
ltrnat |
|
21 |
8 11 19 20
|
syl3anc |
|
22 |
4 5
|
hlatjcom |
|
23 |
15 18 21 22
|
syl3anc |
|
24 |
4 5
|
hlatjcom |
|
25 |
15 16 19 24
|
syl3anc |
|
26 |
25
|
oveq1d |
|
27 |
7 26
|
eqtrid |
|
28 |
27
|
oveq2d |
|
29 |
14 23 28
|
3eqtr4d |
|