Metamath Proof Explorer


Theorem cdlemk1

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 22-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
Assertion cdlemk1 K HL W H F T N T R F = R N P A ¬ P ˙ W P ˙ N P = F P ˙ R F

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 simp3l K HL W H F T N T R F = R N P A ¬ P ˙ W R F = R N
9 8 oveq2d K HL W H F T N T R F = R N P A ¬ P ˙ W P ˙ R F = P ˙ R N
10 simp1 K HL W H F T N T R F = R N P A ¬ P ˙ W K HL W H
11 simp2l K HL W H F T N T R F = R N P A ¬ P ˙ W F T
12 simp3r K HL W H F T N T R F = R N P A ¬ P ˙ W P A ¬ P ˙ W
13 2 3 4 5 6 7 trljat3 K HL W H F T P A ¬ P ˙ W P ˙ R F = F P ˙ R F
14 10 11 12 13 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W P ˙ R F = F P ˙ R F
15 simp2r K HL W H F T N T R F = R N P A ¬ P ˙ W N T
16 2 3 4 5 6 7 trljat1 K HL W H N T P A ¬ P ˙ W P ˙ R N = P ˙ N P
17 10 15 12 16 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W P ˙ R N = P ˙ N P
18 9 14 17 3eqtr3rd K HL W H F T N T R F = R N P A ¬ P ˙ W P ˙ N P = F P ˙ R F