Metamath Proof Explorer


Theorem cdlemk1

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 22-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B=BaseK
cdlemk.l ˙=K
cdlemk.j ˙=joinK
cdlemk.a A=AtomsK
cdlemk.h H=LHypK
cdlemk.t T=LTrnKW
cdlemk.r R=trLKW
Assertion cdlemk1 KHLWHFTNTRF=RNPA¬P˙WP˙NP=FP˙RF

Proof

Step Hyp Ref Expression
1 cdlemk.b B=BaseK
2 cdlemk.l ˙=K
3 cdlemk.j ˙=joinK
4 cdlemk.a A=AtomsK
5 cdlemk.h H=LHypK
6 cdlemk.t T=LTrnKW
7 cdlemk.r R=trLKW
8 simp3l KHLWHFTNTRF=RNPA¬P˙WRF=RN
9 8 oveq2d KHLWHFTNTRF=RNPA¬P˙WP˙RF=P˙RN
10 simp1 KHLWHFTNTRF=RNPA¬P˙WKHLWH
11 simp2l KHLWHFTNTRF=RNPA¬P˙WFT
12 simp3r KHLWHFTNTRF=RNPA¬P˙WPA¬P˙W
13 2 3 4 5 6 7 trljat3 KHLWHFTPA¬P˙WP˙RF=FP˙RF
14 10 11 12 13 syl3anc KHLWHFTNTRF=RNPA¬P˙WP˙RF=FP˙RF
15 simp2r KHLWHFTNTRF=RNPA¬P˙WNT
16 2 3 4 5 6 7 trljat1 KHLWHNTPA¬P˙WP˙RN=P˙NP
17 10 15 12 16 syl3anc KHLWHFTNTRF=RNPA¬P˙WP˙RN=P˙NP
18 9 14 17 3eqtr3rd KHLWHFTNTRF=RNPA¬P˙WP˙NP=FP˙RF