Metamath Proof Explorer


Theorem cdlemk18

Description: Part of proof of Lemma K of Crawley p. 118. Line 22 on p. 119. N , U , O , D are k, sigma_1 (p), k_1, f_1. (Contributed by NM, 2-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B=BaseK
cdlemk1.l ˙=K
cdlemk1.j ˙=joinK
cdlemk1.m ˙=meetK
cdlemk1.a A=AtomsK
cdlemk1.h H=LHypK
cdlemk1.t T=LTrnKW
cdlemk1.r R=trLKW
cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk1.o O=SD
cdlemk1.u U=eTιjT|jP=P˙Re˙OP˙ReD-1
Assertion cdlemk18 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNP=UFP

Proof

Step Hyp Ref Expression
1 cdlemk1.b B=BaseK
2 cdlemk1.l ˙=K
3 cdlemk1.j ˙=joinK
4 cdlemk1.m ˙=meetK
5 cdlemk1.a A=AtomsK
6 cdlemk1.h H=LHypK
7 cdlemk1.t T=LTrnKW
8 cdlemk1.r R=trLKW
9 cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk1.o O=SD
11 cdlemk1.u U=eTιjT|jP=P˙Re˙OP˙ReD-1
12 1 2 3 4 5 6 7 8 9 10 cdlemk17 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNP=P˙RF˙OP˙RFD-1
13 simp11 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFKHLWH
14 simp23 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFRF=RN
15 simp12 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFFT
16 simp13 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFDT
17 simp21 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNT
18 simp33 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFRDRF
19 18 18 jca KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFRDRFRDRF
20 simp31 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFFIB
21 simp32 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFDIB
22 20 20 21 3jca KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFFIBFIBDIB
23 simp22 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFPA¬P˙W
24 1 2 3 4 5 6 7 8 9 10 11 cdlemkuv2 KHLWHRF=RNFTFTDTNTRDRFRDRFFIBFIBDIBPA¬P˙WUFP=P˙RF˙OP˙RFD-1
25 13 14 15 15 16 17 19 22 23 24 syl333anc KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFUFP=P˙RF˙OP˙RFD-1
26 12 25 eqtr4d KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNP=UFP