Metamath Proof Explorer


Theorem cdlemk20-2N

Description: Part of proof of Lemma K of Crawley p. 118. Line 22, p. 119 for the i=2, j=1 case. Note typo on line 22: f should be f_i. Our D , C , O , Q , U , V represent their f_1, f_2, k_1, k_2, sigma_1, sigma_2. (Contributed by NM, 5-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk2.b B=BaseK
cdlemk2.l ˙=K
cdlemk2.j ˙=joinK
cdlemk2.m ˙=meetK
cdlemk2.a A=AtomsK
cdlemk2.h H=LHypK
cdlemk2.t T=LTrnKW
cdlemk2.r R=trLKW
cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk2.q Q=SC
cdlemk2.v V=dTιkT|kP=P˙Rd˙QP˙RdC-1
cdlemk2a.o O=SD
Assertion cdlemk20-2N KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WVDP=OP

Proof

Step Hyp Ref Expression
1 cdlemk2.b B=BaseK
2 cdlemk2.l ˙=K
3 cdlemk2.j ˙=joinK
4 cdlemk2.m ˙=meetK
5 cdlemk2.a A=AtomsK
6 cdlemk2.h H=LHypK
7 cdlemk2.t T=LTrnKW
8 cdlemk2.r R=trLKW
9 cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk2.q Q=SC
11 cdlemk2.v V=dTιkT|kP=P˙Rd˙QP˙RdC-1
12 cdlemk2a.o O=SD
13 simp11 KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WKHL
14 simp12 KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WWH
15 13 14 jca KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WKHLWH
16 simp211 KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WFT
17 simp212 KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WCT
18 simp213 KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WNT
19 simp22l KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WDT
20 18 19 jca KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WNTDT
21 simp33 KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WPA¬P˙W
22 simp13 KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WRF=RN
23 simp32l KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WFIB
24 simp32r KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WCIB
25 simp22r KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WDIB
26 23 24 25 3jca KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WFIBCIBDIB
27 simp31 KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WRCRFRDRFRDRC
28 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk20 KHLWHFTCTNTDTPA¬P˙WRF=RNFIBCIBDIBRCRFRDRFRDRCVDP=OP
29 15 16 17 20 21 22 26 27 28 syl332anc KHLWHRF=RNFTCTNTDTDIBCTCIBRCRFRDRFRDRCFIBCIBPA¬P˙WVDP=OP