Metamath Proof Explorer


Theorem cdlemk29-3

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 14-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
cdlemk3.x X = ι z T | b T b I B R b R F R b R G z = b Y G
Assertion cdlemk29-3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X T

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
11 cdlemk3.x X = ι z T | b T b I B R b R F R b R G z = b Y G
12 1 2 3 4 5 6 7 8 9 10 cdlemk28-3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z = b Y G
13 simp1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N K HL W H
14 1 6 7 8 cdlemftr2 K HL W H b T b I B R b R F R b R G
15 reusv1 b T b I B R b R F R b R G ∃! z T b T b I B R b R F R b R G z = b Y G z T b T b I B R b R F R b R G z = b Y G
16 13 14 15 3syl K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N ∃! z T b T b I B R b R F R b R G z = b Y G z T b T b I B R b R F R b R G z = b Y G
17 12 16 mpbird K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N ∃! z T b T b I B R b R F R b R G z = b Y G
18 riotacl ∃! z T b T b I B R b R F R b R G z = b Y G ι z T | b T b I B R b R F R b R G z = b Y G T
19 17 18 syl K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N ι z T | b T b I B R b R F R b R G z = b Y G T
20 11 19 eqeltrid K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X T