Metamath Proof Explorer


Theorem cdlemk29-3

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 14-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B=BaseK
cdlemk3.l ˙=K
cdlemk3.j ˙=joinK
cdlemk3.m ˙=meetK
cdlemk3.a A=AtomsK
cdlemk3.h H=LHypK
cdlemk3.t T=LTrnKW
cdlemk3.r R=trLKW
cdlemk3.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk3.u1 Y=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
cdlemk3.x X=ιzT|bTbIBRbRFRbRGz=bYG
Assertion cdlemk29-3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNXT

Proof

Step Hyp Ref Expression
1 cdlemk3.b B=BaseK
2 cdlemk3.l ˙=K
3 cdlemk3.j ˙=joinK
4 cdlemk3.m ˙=meetK
5 cdlemk3.a A=AtomsK
6 cdlemk3.h H=LHypK
7 cdlemk3.t T=LTrnKW
8 cdlemk3.r R=trLKW
9 cdlemk3.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk3.u1 Y=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
11 cdlemk3.x X=ιzT|bTbIBRbRFRbRGz=bYG
12 1 2 3 4 5 6 7 8 9 10 cdlemk28-3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNzTbTbIBRbRFRbRGz=bYG
13 simp1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNKHLWH
14 1 6 7 8 cdlemftr2 KHLWHbTbIBRbRFRbRG
15 reusv1 bTbIBRbRFRbRG∃!zTbTbIBRbRFRbRGz=bYGzTbTbIBRbRFRbRGz=bYG
16 13 14 15 3syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RN∃!zTbTbIBRbRFRbRGz=bYGzTbTbIBRbRFRbRGz=bYG
17 12 16 mpbird KHLWHFTFIBGTGIBNTPA¬P˙WRF=RN∃!zTbTbIBRbRFRbRGz=bYG
18 riotacl ∃!zTbTbIBRbRFRbRGz=bYGιzT|bTbIBRbRFRbRGz=bYGT
19 17 18 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNιzT|bTbIBRbRFRbRGz=bYGT
20 11 19 eqeltrid KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNXT