Metamath Proof Explorer


Theorem cdlemk30

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 17-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
Assertion cdlemk30 K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W S b P = P ˙ R b ˙ N P ˙ R b F -1

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 simp1l K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W K HL W H
11 simp21 K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W F T
12 simp22 K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W b T
13 simp23 K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W N T
14 simp33 K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W P A ¬ P ˙ W
15 simp1r K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W R F = R N
16 simp32l K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W F I B
17 simp32r K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W b I B
18 simp31 K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W R b R F
19 1 2 3 5 6 7 8 4 9 cdlemksv2 K HL W H F T b T N T P A ¬ P ˙ W R F = R N F I B b I B R b R F S b P = P ˙ R b ˙ N P ˙ R b F -1
20 10 11 12 13 14 15 16 17 18 19 syl333anc K HL W H R F = R N F T b T N T R b R F F I B b I B P A ¬ P ˙ W S b P = P ˙ R b ˙ N P ˙ R b F -1