Metamath Proof Explorer


Theorem cdlemk30

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 17-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B=BaseK
cdlemk3.l ˙=K
cdlemk3.j ˙=joinK
cdlemk3.m ˙=meetK
cdlemk3.a A=AtomsK
cdlemk3.h H=LHypK
cdlemk3.t T=LTrnKW
cdlemk3.r R=trLKW
cdlemk3.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
Assertion cdlemk30 KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WSbP=P˙Rb˙NP˙RbF-1

Proof

Step Hyp Ref Expression
1 cdlemk3.b B=BaseK
2 cdlemk3.l ˙=K
3 cdlemk3.j ˙=joinK
4 cdlemk3.m ˙=meetK
5 cdlemk3.a A=AtomsK
6 cdlemk3.h H=LHypK
7 cdlemk3.t T=LTrnKW
8 cdlemk3.r R=trLKW
9 cdlemk3.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 simp1l KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WKHLWH
11 simp21 KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WFT
12 simp22 KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WbT
13 simp23 KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WNT
14 simp33 KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WPA¬P˙W
15 simp1r KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WRF=RN
16 simp32l KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WFIB
17 simp32r KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WbIB
18 simp31 KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WRbRF
19 1 2 3 5 6 7 8 4 9 cdlemksv2 KHLWHFTbTNTPA¬P˙WRF=RNFIBbIBRbRFSbP=P˙Rb˙NP˙RbF-1
20 10 11 12 13 14 15 16 17 18 19 syl333anc KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WSbP=P˙Rb˙NP˙RbF-1