Metamath Proof Explorer


Theorem cdlemkoatnle

Description: Utility lemma. (Contributed by NM, 2-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
Assertion cdlemkoatnle K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A ¬ O P ˙ W

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 simp11 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F K HL W H
12 1 2 3 5 6 7 8 4 9 cdlemksel K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F S D T
13 10 12 eqeltrid K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O T
14 simp22 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P A ¬ P ˙ W
15 2 5 6 7 ltrnel K HL W H O T P A ¬ P ˙ W O P A ¬ O P ˙ W
16 11 13 14 15 syl3anc K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A ¬ O P ˙ W