Metamath Proof Explorer


Theorem cdlemkoatnle

Description: Utility lemma. (Contributed by NM, 2-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B=BaseK
cdlemk1.l ˙=K
cdlemk1.j ˙=joinK
cdlemk1.m ˙=meetK
cdlemk1.a A=AtomsK
cdlemk1.h H=LHypK
cdlemk1.t T=LTrnKW
cdlemk1.r R=trLKW
cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk1.o O=SD
Assertion cdlemkoatnle KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFOPA¬OP˙W

Proof

Step Hyp Ref Expression
1 cdlemk1.b B=BaseK
2 cdlemk1.l ˙=K
3 cdlemk1.j ˙=joinK
4 cdlemk1.m ˙=meetK
5 cdlemk1.a A=AtomsK
6 cdlemk1.h H=LHypK
7 cdlemk1.t T=LTrnKW
8 cdlemk1.r R=trLKW
9 cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk1.o O=SD
11 simp11 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFKHLWH
12 1 2 3 5 6 7 8 4 9 cdlemksel KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFSDT
13 10 12 eqeltrid KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFOT
14 simp22 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFPA¬P˙W
15 2 5 6 7 ltrnel KHLWHOTPA¬P˙WOPA¬OP˙W
16 11 13 14 15 syl3anc KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFOPA¬OP˙W