Metamath Proof Explorer


Theorem cdlemksel

Description: Part of proof of Lemma K of Crawley p. 118. Conditions for the sigma(p) function to be a translation. TODO: combine cdlemki ? (Contributed by NM, 26-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B=BaseK
cdlemk.l ˙=K
cdlemk.j ˙=joinK
cdlemk.a A=AtomsK
cdlemk.h H=LHypK
cdlemk.t T=LTrnKW
cdlemk.r R=trLKW
cdlemk.m ˙=meetK
cdlemk.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
Assertion cdlemksel KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSGT

Proof

Step Hyp Ref Expression
1 cdlemk.b B=BaseK
2 cdlemk.l ˙=K
3 cdlemk.j ˙=joinK
4 cdlemk.a A=AtomsK
5 cdlemk.h H=LHypK
6 cdlemk.t T=LTrnKW
7 cdlemk.r R=trLKW
8 cdlemk.m ˙=meetK
9 cdlemk.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 simp13 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFGT
11 1 2 3 4 5 6 7 8 9 cdlemksv GTSG=ιiT|iP=P˙RG˙NP˙RGF-1
12 10 11 syl KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSG=ιiT|iP=P˙RG˙NP˙RGF-1
13 eqid ιiT|iP=P˙RG˙NP˙RGF-1=ιiT|iP=P˙RG˙NP˙RGF-1
14 1 2 3 4 5 6 7 8 13 cdlemki KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFιiT|iP=P˙RG˙NP˙RGF-1T
15 12 14 eqeltrd KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSGT