Metamath Proof Explorer


Theorem cdlemksel

Description: Part of proof of Lemma K of Crawley p. 118. Conditions for the sigma(p) function to be a translation. TODO: combine cdlemki ? (Contributed by NM, 26-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
Assertion cdlemksel K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G T

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 simp13 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F G T
11 1 2 3 4 5 6 7 8 9 cdlemksv G T S G = ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1
12 10 11 syl K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G = ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1
13 eqid ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1 = ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1
14 1 2 3 4 5 6 7 8 13 cdlemki K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1 T
15 12 14 eqeltrd K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G T