| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemk.b |  | 
						
							| 2 |  | cdlemk.l |  | 
						
							| 3 |  | cdlemk.j |  | 
						
							| 4 |  | cdlemk.a |  | 
						
							| 5 |  | cdlemk.h |  | 
						
							| 6 |  | cdlemk.t |  | 
						
							| 7 |  | cdlemk.r |  | 
						
							| 8 |  | cdlemk.m |  | 
						
							| 9 |  | cdlemk.i |  | 
						
							| 10 |  | simp11 |  | 
						
							| 11 |  | simp22 |  | 
						
							| 12 |  | simp1 |  | 
						
							| 13 |  | simp21 |  | 
						
							| 14 | 2 4 5 6 | ltrnel |  | 
						
							| 15 | 10 13 11 14 | syl3anc |  | 
						
							| 16 |  | simp11l |  | 
						
							| 17 |  | simp22l |  | 
						
							| 18 | 14 | simpld |  | 
						
							| 19 | 10 13 11 18 | syl3anc |  | 
						
							| 20 | 2 3 4 | hlatlej2 |  | 
						
							| 21 | 16 17 19 20 | syl3anc |  | 
						
							| 22 |  | simp23 |  | 
						
							| 23 | 22 | oveq2d |  | 
						
							| 24 | 2 3 4 5 6 7 | trljat1 |  | 
						
							| 25 | 10 13 11 24 | syl3anc |  | 
						
							| 26 | 23 25 | eqtr2d |  | 
						
							| 27 | 21 26 | breqtrd |  | 
						
							| 28 |  | simp31 |  | 
						
							| 29 |  | simp32 |  | 
						
							| 30 |  | simp33 |  | 
						
							| 31 | 30 | necomd |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 1 2 3 8 4 5 6 7 32 | cdlemh |  | 
						
							| 34 | 12 11 15 27 28 29 31 33 | syl133anc |  | 
						
							| 35 | 2 4 5 6 9 | ltrniotacl |  | 
						
							| 36 | 10 11 34 35 | syl3anc |  |