Metamath Proof Explorer


Theorem cdlemki

Description: Part of proof of Lemma K of Crawley p. 118. TODO: Eliminate and put into cdlemksel . (Contributed by NM, 25-Jun-2013)

Ref Expression
Hypotheses cdlemk.b
|- B = ( Base ` K )
cdlemk.l
|- .<_ = ( le ` K )
cdlemk.j
|- .\/ = ( join ` K )
cdlemk.a
|- A = ( Atoms ` K )
cdlemk.h
|- H = ( LHyp ` K )
cdlemk.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk.r
|- R = ( ( trL ` K ) ` W )
cdlemk.m
|- ./\ = ( meet ` K )
cdlemk.i
|- I = ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) )
Assertion cdlemki
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> I e. T )

Proof

Step Hyp Ref Expression
1 cdlemk.b
 |-  B = ( Base ` K )
2 cdlemk.l
 |-  .<_ = ( le ` K )
3 cdlemk.j
 |-  .\/ = ( join ` K )
4 cdlemk.a
 |-  A = ( Atoms ` K )
5 cdlemk.h
 |-  H = ( LHyp ` K )
6 cdlemk.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemk.r
 |-  R = ( ( trL ` K ) ` W )
8 cdlemk.m
 |-  ./\ = ( meet ` K )
9 cdlemk.i
 |-  I = ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) )
10 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) )
11 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( P e. A /\ -. P .<_ W ) )
12 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) )
13 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> N e. T )
14 2 4 5 6 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( N ` P ) e. A /\ -. ( N ` P ) .<_ W ) )
15 10 13 11 14 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( N ` P ) e. A /\ -. ( N ` P ) .<_ W ) )
16 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> K e. HL )
17 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> P e. A )
18 14 simpld
 |-  ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( N ` P ) e. A )
19 10 13 11 18 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( N ` P ) e. A )
20 2 3 4 hlatlej2
 |-  ( ( K e. HL /\ P e. A /\ ( N ` P ) e. A ) -> ( N ` P ) .<_ ( P .\/ ( N ` P ) ) )
21 16 17 19 20 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( P .\/ ( N ` P ) ) )
22 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( R ` F ) = ( R ` N ) )
23 22 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` F ) ) = ( P .\/ ( R ` N ) ) )
24 2 3 4 5 6 7 trljat1
 |-  ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` N ) ) = ( P .\/ ( N ` P ) ) )
25 10 13 11 24 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` N ) ) = ( P .\/ ( N ` P ) ) )
26 23 25 eqtr2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( P .\/ ( N ` P ) ) = ( P .\/ ( R ` F ) ) )
27 21 26 breqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( P .\/ ( R ` F ) ) )
28 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> F =/= ( _I |` B ) )
29 simp32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> G =/= ( _I |` B ) )
30 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( R ` G ) =/= ( R ` F ) )
31 30 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( R ` F ) =/= ( R ` G ) )
32 eqid
 |-  ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) )
33 1 2 3 8 4 5 6 7 32 cdlemh
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( N ` P ) e. A /\ -. ( N ` P ) .<_ W ) /\ ( N ` P ) .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) e. A /\ -. ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ W ) )
34 12 11 15 27 28 29 31 33 syl133anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) e. A /\ -. ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ W ) )
35 2 4 5 6 9 ltrniotacl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) e. A /\ -. ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ W ) ) -> I e. T )
36 10 11 34 35 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> I e. T )