Metamath Proof Explorer


Theorem cdlemkuel

Description: Part of proof of Lemma K of Crawley p. 118. Conditions for the sigma_1 (p) function to be a translation. TODO: combine cdlemkj ? (Contributed by NM, 2-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B=BaseK
cdlemk1.l ˙=K
cdlemk1.j ˙=joinK
cdlemk1.m ˙=meetK
cdlemk1.a A=AtomsK
cdlemk1.h H=LHypK
cdlemk1.t T=LTrnKW
cdlemk1.r R=trLKW
cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk1.o O=SD
cdlemk1.u U=eTιjT|jP=P˙Re˙OP˙ReD-1
Assertion cdlemkuel KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WUGT

Proof

Step Hyp Ref Expression
1 cdlemk1.b B=BaseK
2 cdlemk1.l ˙=K
3 cdlemk1.j ˙=joinK
4 cdlemk1.m ˙=meetK
5 cdlemk1.a A=AtomsK
6 cdlemk1.h H=LHypK
7 cdlemk1.t T=LTrnKW
8 cdlemk1.r R=trLKW
9 cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk1.o O=SD
11 cdlemk1.u U=eTιjT|jP=P˙Re˙OP˙ReD-1
12 simp13 KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WGT
13 1 2 3 5 6 7 8 4 11 cdlemksv GTUG=ιjT|jP=P˙RG˙OP˙RGD-1
14 12 13 syl KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WUG=ιjT|jP=P˙RG˙OP˙RGD-1
15 eqid ιjT|jP=P˙RG˙OP˙RGD-1=ιjT|jP=P˙RG˙OP˙RGD-1
16 1 2 3 4 5 6 7 8 9 10 15 cdlemkj KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WιjT|jP=P˙RG˙OP˙RGD-1T
17 14 16 eqeltrd KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WUGT