Metamath Proof Explorer


Theorem ceqsrexv

Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004)

Ref Expression
Hypothesis ceqsrexv.1 x=Aφψ
Assertion ceqsrexv ABxBx=Aφψ

Proof

Step Hyp Ref Expression
1 ceqsrexv.1 x=Aφψ
2 df-rex xBx=AφxxBx=Aφ
3 an12 x=AxBφxBx=Aφ
4 3 exbii xx=AxBφxxBx=Aφ
5 2 4 bitr4i xBx=Aφxx=AxBφ
6 eleq1 x=AxBAB
7 6 1 anbi12d x=AxBφABψ
8 7 ceqsexgv ABxx=AxBφABψ
9 8 bianabs ABxx=AxBφψ
10 5 9 bitrid ABxBx=Aφψ