Metamath Proof Explorer


Theorem ceqsrexv

Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004)

Ref Expression
Hypothesis ceqsrexv.1 x = A φ ψ
Assertion ceqsrexv A B x B x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsrexv.1 x = A φ ψ
2 df-rex x B x = A φ x x B x = A φ
3 an12 x = A x B φ x B x = A φ
4 3 exbii x x = A x B φ x x B x = A φ
5 2 4 bitr4i x B x = A φ x x = A x B φ
6 eleq1 x = A x B A B
7 6 1 anbi12d x = A x B φ A B ψ
8 7 ceqsexgv A B x x = A x B φ A B ψ
9 8 bianabs A B x x = A x B φ ψ
10 5 9 syl5bb A B x B x = A φ ψ