Metamath Proof Explorer


Theorem cgr3tr4

Description: Transitivity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion cgr3tr4 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NABCCgr3DEFABCCgr3GHIDEFCgr3GHI

Proof

Step Hyp Ref Expression
1 3an6 ABCgrDEABCgrGHACCgrDFACCgrGIBCCgrEFBCCgrHIABCgrDEACCgrDFBCCgrEFABCgrGHACCgrGIBCCgrHI
2 simpl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NN
3 simpr11 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NA𝔼N
4 simpr12 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NB𝔼N
5 simpr21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼ND𝔼N
6 simpr22 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NE𝔼N
7 simpr31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NG𝔼N
8 simpr32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NH𝔼N
9 axcgrtr NA𝔼NB𝔼ND𝔼NE𝔼NG𝔼NH𝔼NABCgrDEABCgrGHDECgrGH
10 2 3 4 5 6 7 8 9 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NABCgrDEABCgrGHDECgrGH
11 simpr13 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NC𝔼N
12 simpr23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NF𝔼N
13 simpr33 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NI𝔼N
14 axcgrtr NA𝔼NC𝔼ND𝔼NF𝔼NG𝔼NI𝔼NACCgrDFACCgrGIDFCgrGI
15 2 3 11 5 12 7 13 14 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NACCgrDFACCgrGIDFCgrGI
16 axcgrtr NB𝔼NC𝔼NE𝔼NF𝔼NH𝔼NI𝔼NBCCgrEFBCCgrHIEFCgrHI
17 2 4 11 6 12 8 13 16 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NBCCgrEFBCCgrHIEFCgrHI
18 10 15 17 3anim123d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NABCgrDEABCgrGHACCgrDFACCgrGIBCCgrEFBCCgrHIDECgrGHDFCgrGIEFCgrHI
19 1 18 biimtrrid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NABCgrDEACCgrDFBCCgrEFABCgrGHACCgrGIBCCgrHIDECgrGHDFCgrGIEFCgrHI
20 brcgr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFABCgrDEACCgrDFBCCgrEF
21 20 3adant3r3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NABCCgr3DEFABCgrDEACCgrDFBCCgrEF
22 brcgr3 NA𝔼NB𝔼NC𝔼NG𝔼NH𝔼NI𝔼NABCCgr3GHIABCgrGHACCgrGIBCCgrHI
23 22 3adant3r2 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NABCCgr3GHIABCgrGHACCgrGIBCCgrHI
24 21 23 anbi12d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NABCCgr3DEFABCCgr3GHIABCgrDEACCgrDFBCCgrEFABCgrGHACCgrGIBCCgrHI
25 brcgr3 ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NDEFCgr3GHIDECgrGHDFCgrGIEFCgrHI
26 25 3adant3r1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NDEFCgr3GHIDECgrGHDFCgrGIEFCgrHI
27 19 24 26 3imtr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NI𝔼NABCCgr3DEFABCCgr3GHIDEFCgr3GHI