Metamath Proof Explorer


Theorem cgrcomlr

Description: Congruence commutes on both sides. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrcomlr NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDBACgrDC

Proof

Step Hyp Ref Expression
1 cgrcoml NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDBACgrCD
2 ancom A𝔼NB𝔼NB𝔼NA𝔼N
3 cgrcomr NB𝔼NA𝔼NC𝔼ND𝔼NBACgrCDBACgrDC
4 2 3 syl3an2b NA𝔼NB𝔼NC𝔼ND𝔼NBACgrCDBACgrDC
5 1 4 bitrd NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDBACgrDC