Metamath Proof Explorer


Theorem cgrid2

Description: Identity law for congruence. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrid2 NA𝔼NB𝔼NC𝔼NAACgrBCB=C

Proof

Step Hyp Ref Expression
1 simpl NA𝔼NB𝔼NC𝔼NN
2 simpr1 NA𝔼NB𝔼NC𝔼NA𝔼N
3 simpr2 NA𝔼NB𝔼NC𝔼NB𝔼N
4 simpr3 NA𝔼NB𝔼NC𝔼NC𝔼N
5 cgrcom NA𝔼NA𝔼NB𝔼NC𝔼NAACgrBCBCCgrAA
6 1 2 2 3 4 5 syl122anc NA𝔼NB𝔼NC𝔼NAACgrBCBCCgrAA
7 3anrot A𝔼NB𝔼NC𝔼NB𝔼NC𝔼NA𝔼N
8 axcgrid NB𝔼NC𝔼NA𝔼NBCCgrAAB=C
9 7 8 sylan2b NA𝔼NB𝔼NC𝔼NBCCgrAAB=C
10 6 9 sylbid NA𝔼NB𝔼NC𝔼NAACgrBCB=C