Metamath Proof Explorer


Theorem cgrrflx2d

Description: Deduction form of axcgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrrflx2d.1 φN
cgrrflx2d.2 φA𝔼N
cgrrflx2d.3 φB𝔼N
Assertion cgrrflx2d φABCgrBA

Proof

Step Hyp Ref Expression
1 cgrrflx2d.1 φN
2 cgrrflx2d.2 φA𝔼N
3 cgrrflx2d.3 φB𝔼N
4 axcgrrflx NA𝔼NB𝔼NABCgrBA
5 1 2 3 4 syl3anc φABCgrBA