Metamath Proof Explorer


Theorem cgrrflxd

Description: Deduction form of cgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrrflxd.1 φ N
cgrrflxd.2 φ A 𝔼 N
cgrrflxd.3 φ B 𝔼 N
Assertion cgrrflxd φ A B Cgr A B

Proof

Step Hyp Ref Expression
1 cgrrflxd.1 φ N
2 cgrrflxd.2 φ A 𝔼 N
3 cgrrflxd.3 φ B 𝔼 N
4 cgrrflx N A 𝔼 N B 𝔼 N A B Cgr A B
5 1 2 3 4 syl3anc φ A B Cgr A B