Metamath Proof Explorer


Theorem cgrtr4and

Description: Deduction form of axcgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtr4and.1 φN
cgrtr4and.2 φA𝔼N
cgrtr4and.3 φB𝔼N
cgrtr4and.4 φC𝔼N
cgrtr4and.5 φD𝔼N
cgrtr4and.6 φE𝔼N
cgrtr4and.7 φF𝔼N
cgrtr4and.8 φψABCgrCD
cgrtr4and.9 φψABCgrEF
Assertion cgrtr4and φψCDCgrEF

Proof

Step Hyp Ref Expression
1 cgrtr4and.1 φN
2 cgrtr4and.2 φA𝔼N
3 cgrtr4and.3 φB𝔼N
4 cgrtr4and.4 φC𝔼N
5 cgrtr4and.5 φD𝔼N
6 cgrtr4and.6 φE𝔼N
7 cgrtr4and.7 φF𝔼N
8 cgrtr4and.8 φψABCgrCD
9 cgrtr4and.9 φψABCgrEF
10 1 adantr φψN
11 2 adantr φψA𝔼N
12 3 adantr φψB𝔼N
13 4 adantr φψC𝔼N
14 5 adantr φψD𝔼N
15 6 adantr φψE𝔼N
16 7 adantr φψF𝔼N
17 10 11 12 13 14 15 16 8 9 cgrtr4d φψCDCgrEF