Metamath Proof Explorer


Theorem chtf

Description: Domain and codoamin of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion chtf θ:

Proof

Step Hyp Ref Expression
1 df-cht θ=xp0xlogp
2 ppifi x0xFin
3 simpr xp0xp0x
4 3 elin2d xp0xp
5 prmnn pp
6 4 5 syl xp0xp
7 6 nnrpd xp0xp+
8 7 relogcld xp0xlogp
9 2 8 fsumrecl xp0xlogp
10 1 9 fmpti θ: