Metamath Proof Explorer


Theorem cjneg

Description: Complex conjugate of negative. (Contributed by NM, 27-Feb-2005) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion cjneg AA=A

Proof

Step Hyp Ref Expression
1 recl AA
2 1 recnd AA
3 ax-icn i
4 imcl AA
5 4 recnd AA
6 mulcl iAiA
7 3 5 6 sylancr AiA
8 2 7 neg2subd A-A-iA=iAA
9 reneg AA=A
10 imneg AA=A
11 10 oveq2d AiA=iA
12 mulneg2 iAiA=iA
13 3 5 12 sylancr AiA=iA
14 11 13 eqtrd AiA=iA
15 9 14 oveq12d AAiA=-A-iA
16 2 7 negsubdi2d AAiA=iAA
17 8 15 16 3eqtr4d AAiA=AiA
18 negcl AA
19 remim AA=AiA
20 18 19 syl AA=AiA
21 remim AA=AiA
22 21 negeqd AA=AiA
23 17 20 22 3eqtr4d AA=A