Metamath Proof Explorer


Theorem clatp0cl

Description: The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018)

Ref Expression
Hypotheses clatp0cl.b B=BaseW
clatp0cl.0 0˙=0.W
Assertion clatp0cl WCLat0˙B

Proof

Step Hyp Ref Expression
1 clatp0cl.b B=BaseW
2 clatp0cl.0 0˙=0.W
3 eqid glbW=glbW
4 1 3 2 p0val WCLat0˙=glbWB
5 ssid BB
6 1 3 clatglbcl WCLatBBglbWBB
7 5 6 mpan2 WCLatglbWBB
8 4 7 eqeltrd WCLat0˙B