Metamath Proof Explorer


Theorem clatp0cl

Description: The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018)

Ref Expression
Hypotheses clatp0cl.b B = Base W
clatp0cl.0 0 ˙ = 0. W
Assertion clatp0cl W CLat 0 ˙ B

Proof

Step Hyp Ref Expression
1 clatp0cl.b B = Base W
2 clatp0cl.0 0 ˙ = 0. W
3 eqid glb W = glb W
4 1 3 2 p0val W CLat 0 ˙ = glb W B
5 ssid B B
6 1 3 clatglbcl W CLat B B glb W B B
7 5 6 mpan2 W CLat glb W B B
8 4 7 eqeltrd W CLat 0 ˙ B