Metamath Proof Explorer


Theorem clatp1cl

Description: The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018)

Ref Expression
Hypotheses clatp1cl.b B = Base W
clatp1cl.1 1 ˙ = 1. W
Assertion clatp1cl W CLat 1 ˙ B

Proof

Step Hyp Ref Expression
1 clatp1cl.b B = Base W
2 clatp1cl.1 1 ˙ = 1. W
3 eqid lub W = lub W
4 1 3 2 p1val W CLat 1 ˙ = lub W B
5 ssid B B
6 1 3 clatlubcl W CLat B B lub W B B
7 5 6 mpan2 W CLat lub W B B
8 4 7 eqeltrd W CLat 1 ˙ B