Metamath Proof Explorer


Theorem cldcls

Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007)

Ref Expression
Assertion cldcls SClsdJclsJS=S

Proof

Step Hyp Ref Expression
1 cldrcl SClsdJJTop
2 eqid J=J
3 2 cldss SClsdJSJ
4 2 clsval JTopSJclsJS=xClsdJ|Sx
5 1 3 4 syl2anc SClsdJclsJS=xClsdJ|Sx
6 intmin SClsdJxClsdJ|Sx=S
7 5 6 eqtrd SClsdJclsJS=S