Metamath Proof Explorer


Theorem climcn1lem

Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses climcn1lem.1 Z=M
climcn1lem.2 φFA
climcn1lem.4 φGW
climcn1lem.5 φM
climcn1lem.6 φkZFk
climcn1lem.7 H:
climcn1lem.8 Ax+y+zzA<yHzHA<x
climcn1lem.9 φkZGk=HFk
Assertion climcn1lem φGHA

Proof

Step Hyp Ref Expression
1 climcn1lem.1 Z=M
2 climcn1lem.2 φFA
3 climcn1lem.4 φGW
4 climcn1lem.5 φM
5 climcn1lem.6 φkZFk
6 climcn1lem.7 H:
7 climcn1lem.8 Ax+y+zzA<yHzHA<x
8 climcn1lem.9 φkZGk=HFk
9 climcl FAA
10 2 9 syl φA
11 6 ffvelcdmi zHz
12 11 adantl φzHz
13 10 7 sylan φx+y+zzA<yHzHA<x
14 1 4 10 12 2 3 13 5 8 climcn1 φGHA