Metamath Proof Explorer


Theorem climi0

Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climi.1 Z=M
climi.2 φM
climi.3 φC+
climi.4 φkZFk=B
climi0.5 φF0
Assertion climi0 φjZkjB<C

Proof

Step Hyp Ref Expression
1 climi.1 Z=M
2 climi.2 φM
3 climi.3 φC+
4 climi.4 φkZFk=B
5 climi0.5 φF0
6 1 2 3 4 5 climi φjZkjBB0<C
7 subid1 BB0=B
8 7 fveq2d BB0=B
9 8 breq1d BB0<CB<C
10 9 biimpa BB0<CB<C
11 10 ralimi kjBB0<CkjB<C
12 11 reximi jZkjBB0<CjZkjB<C
13 6 12 syl φjZkjB<C