Metamath Proof Explorer


Theorem climrecl

Description: The limit of a convergent real sequence is real. Corollary 12-2.5 of Gleason p. 172. (Contributed by NM, 10-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses climshft2.1 Z = M
climshft2.2 φ M
climrecl.3 φ F A
climrecl.4 φ k Z F k
Assertion climrecl φ A

Proof

Step Hyp Ref Expression
1 climshft2.1 Z = M
2 climshft2.2 φ M
3 climrecl.3 φ F A
4 climrecl.4 φ k Z F k
5 1 uzsup M sup Z * < = +∞
6 2 5 syl φ sup Z * < = +∞
7 climrel Rel
8 7 brrelex1i F A F V
9 3 8 syl φ F V
10 eqid k Z F k = k Z F k
11 1 10 climmpt M F V F A k Z F k A
12 2 9 11 syl2anc φ F A k Z F k A
13 3 12 mpbid φ k Z F k A
14 4 recnd φ k Z F k
15 14 fmpttd φ k Z F k : Z
16 1 2 15 rlimclim φ k Z F k A k Z F k A
17 13 16 mpbird φ k Z F k A
18 6 17 4 rlimrecl φ A