Metamath Proof Explorer


Theorem climuzcnv

Description: Utility lemma to convert between m <_ k and k e. ( ZZ>=m ) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012)

Ref Expression
Assertion climuzcnv m k m φ k m k φ

Proof

Step Hyp Ref Expression
1 elnnuz m m 1
2 uztrn k m m 1 k 1
3 1 2 sylan2b k m m k 1
4 elnnuz k k 1
5 3 4 sylibr k m m k
6 5 expcom m k m k
7 eluzle k m m k
8 7 a1i m k m m k
9 6 8 jcad m k m k m k
10 nnz k k
11 nnz m m
12 eluz2 k m m k m k
13 12 biimpri m k m k k m
14 11 13 syl3an1 m k m k k m
15 10 14 syl3an2 m k m k k m
16 15 3expib m k m k k m
17 9 16 impbid m k m k m k
18 17 imbi1d m k m φ k m k φ
19 impexp k m k φ k m k φ
20 18 19 bitrdi m k m φ k m k φ