| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnnuz |
⊢ ( 𝑚 ∈ ℕ ↔ 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
| 2 |
|
uztrn |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 3 |
1 2
|
sylan2b |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 4 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 5 |
3 4
|
sylibr |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 6 |
5
|
expcom |
⊢ ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑘 ∈ ℕ ) ) |
| 7 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑚 ≤ 𝑘 ) |
| 8 |
7
|
a1i |
⊢ ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑚 ≤ 𝑘 ) ) |
| 9 |
6 8
|
jcad |
⊢ ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) ) ) |
| 10 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 11 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
| 12 |
|
eluz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ↔ ( 𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘 ) ) |
| 13 |
12
|
biimpri |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
| 14 |
11 13
|
syl3an1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
| 15 |
10 14
|
syl3an2 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
| 16 |
15
|
3expib |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
| 17 |
9 16
|
impbid |
⊢ ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) ) ) |
| 18 |
17
|
imbi1d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝜑 ) ↔ ( ( 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) → 𝜑 ) ) ) |
| 19 |
|
impexp |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) → 𝜑 ) ↔ ( 𝑘 ∈ ℕ → ( 𝑚 ≤ 𝑘 → 𝜑 ) ) ) |
| 20 |
18 19
|
bitrdi |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝜑 ) ↔ ( 𝑘 ∈ ℕ → ( 𝑚 ≤ 𝑘 → 𝜑 ) ) ) ) |