Metamath Proof Explorer


Theorem climuzcnv

Description: Utility lemma to convert between m <_ k and k e. ( ZZ>=m ) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012)

Ref Expression
Assertion climuzcnv ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ( ℤ𝑚 ) → 𝜑 ) ↔ ( 𝑘 ∈ ℕ → ( 𝑚𝑘𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 elnnuz ( 𝑚 ∈ ℕ ↔ 𝑚 ∈ ( ℤ ‘ 1 ) )
2 uztrn ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ 𝑚 ∈ ( ℤ ‘ 1 ) ) → 𝑘 ∈ ( ℤ ‘ 1 ) )
3 1 2 sylan2b ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ( ℤ ‘ 1 ) )
4 elnnuz ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ ‘ 1 ) )
5 3 4 sylibr ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ℕ )
6 5 expcom ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ𝑚 ) → 𝑘 ∈ ℕ ) )
7 eluzle ( 𝑘 ∈ ( ℤ𝑚 ) → 𝑚𝑘 )
8 7 a1i ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ𝑚 ) → 𝑚𝑘 ) )
9 6 8 jcad ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ𝑚 ) → ( 𝑘 ∈ ℕ ∧ 𝑚𝑘 ) ) )
10 nnz ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ )
11 nnz ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ )
12 eluz2 ( 𝑘 ∈ ( ℤ𝑚 ) ↔ ( 𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘 ) )
13 12 biimpri ( ( 𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘 ) → 𝑘 ∈ ( ℤ𝑚 ) )
14 11 13 syl3an1 ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘 ) → 𝑘 ∈ ( ℤ𝑚 ) )
15 10 14 syl3an2 ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ∧ 𝑚𝑘 ) → 𝑘 ∈ ( ℤ𝑚 ) )
16 15 3expib ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ℕ ∧ 𝑚𝑘 ) → 𝑘 ∈ ( ℤ𝑚 ) ) )
17 9 16 impbid ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ𝑚 ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑚𝑘 ) ) )
18 17 imbi1d ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ( ℤ𝑚 ) → 𝜑 ) ↔ ( ( 𝑘 ∈ ℕ ∧ 𝑚𝑘 ) → 𝜑 ) ) )
19 impexp ( ( ( 𝑘 ∈ ℕ ∧ 𝑚𝑘 ) → 𝜑 ) ↔ ( 𝑘 ∈ ℕ → ( 𝑚𝑘𝜑 ) ) )
20 18 19 bitrdi ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ( ℤ𝑚 ) → 𝜑 ) ↔ ( 𝑘 ∈ ℕ → ( 𝑚𝑘𝜑 ) ) ) )