Step |
Hyp |
Ref |
Expression |
1 |
|
elnnuz |
⊢ ( 𝑚 ∈ ℕ ↔ 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
2 |
|
uztrn |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
3 |
1 2
|
sylan2b |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
4 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
5 |
3 4
|
sylibr |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
6 |
5
|
expcom |
⊢ ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑘 ∈ ℕ ) ) |
7 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑚 ≤ 𝑘 ) |
8 |
7
|
a1i |
⊢ ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑚 ≤ 𝑘 ) ) |
9 |
6 8
|
jcad |
⊢ ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) ) ) |
10 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
11 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
12 |
|
eluz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ↔ ( 𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘 ) ) |
13 |
12
|
biimpri |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
14 |
11 13
|
syl3an1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
15 |
10 14
|
syl3an2 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
16 |
15
|
3expib |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
17 |
9 16
|
impbid |
⊢ ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) ) ) |
18 |
17
|
imbi1d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝜑 ) ↔ ( ( 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) → 𝜑 ) ) ) |
19 |
|
impexp |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘 ) → 𝜑 ) ↔ ( 𝑘 ∈ ℕ → ( 𝑚 ≤ 𝑘 → 𝜑 ) ) ) |
20 |
18 19
|
bitrdi |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝜑 ) ↔ ( 𝑘 ∈ ℕ → ( 𝑚 ≤ 𝑘 → 𝜑 ) ) ) ) |