| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sinccvg.1 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } ) ) | 
						
							| 2 |  | sinccvg.2 | ⊢ ( 𝜑  →  𝐹  ⇝  0 ) | 
						
							| 3 |  | sinccvg.3 | ⊢ 𝐺  =  ( 𝑥  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 4 |  | sinccvg.4 | ⊢ 𝐻  =  ( 𝑥  ∈  ℂ  ↦  ( 1  −  ( ( 𝑥 ↑ 2 )  /  3 ) ) ) | 
						
							| 5 |  | sinccvg.5 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 6 |  | sinccvg.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1 ) | 
						
							| 7 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑀 )  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 8 | 5 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 9 | 4 | funmpt2 | ⊢ Fun  𝐻 | 
						
							| 10 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 11 |  | fex | ⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  ℕ  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 12 | 1 10 11 | sylancl | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 13 |  | cofunexg | ⊢ ( ( Fun  𝐻  ∧  𝐹  ∈  V )  →  ( 𝐻  ∘  𝐹 )  ∈  V ) | 
						
							| 14 | 9 12 13 | sylancr | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 )  ∈  V ) | 
						
							| 15 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } ) ) | 
						
							| 16 |  | eluznn | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 17 | 5 16 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 18 | 15 17 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℝ  ∖  { 0 } ) ) | 
						
							| 19 |  | eldifsn | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ( ℝ  ∖  { 0 } )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ≠  0 ) ) | 
						
							| 20 | 18 19 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ≠  0 ) ) | 
						
							| 21 | 20 | simpld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 22 | 21 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 23 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 24 |  | sqcl | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥 ↑ 2 )  ∈  ℂ ) | 
						
							| 25 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 26 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 27 |  | divcl | ⊢ ( ( ( 𝑥 ↑ 2 )  ∈  ℂ  ∧  3  ∈  ℂ  ∧  3  ≠  0 )  →  ( ( 𝑥 ↑ 2 )  /  3 )  ∈  ℂ ) | 
						
							| 28 | 25 26 27 | mp3an23 | ⊢ ( ( 𝑥 ↑ 2 )  ∈  ℂ  →  ( ( 𝑥 ↑ 2 )  /  3 )  ∈  ℂ ) | 
						
							| 29 | 24 28 | syl | ⊢ ( 𝑥  ∈  ℂ  →  ( ( 𝑥 ↑ 2 )  /  3 )  ∈  ℂ ) | 
						
							| 30 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( ( 𝑥 ↑ 2 )  /  3 )  ∈  ℂ )  →  ( 1  −  ( ( 𝑥 ↑ 2 )  /  3 ) )  ∈  ℂ ) | 
						
							| 31 | 23 29 30 | sylancr | ⊢ ( 𝑥  ∈  ℂ  →  ( 1  −  ( ( 𝑥 ↑ 2 )  /  3 ) )  ∈  ℂ ) | 
						
							| 32 | 4 31 | fmpti | ⊢ 𝐻 : ℂ ⟶ ℂ | 
						
							| 33 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 34 | 33 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 35 | 34 | a1i | ⊢ ( ⊤  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 36 |  | 1cnd | ⊢ ( ⊤  →  1  ∈  ℂ ) | 
						
							| 37 | 35 35 36 | cnmptc | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  1 )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 38 | 33 | sqcn | ⊢ ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 2 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 39 | 38 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 2 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 40 | 33 | divccn | ⊢ ( ( 3  ∈  ℂ  ∧  3  ≠  0 )  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦  /  3 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 41 | 25 26 40 | mp2an | ⊢ ( 𝑦  ∈  ℂ  ↦  ( 𝑦  /  3 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 42 | 41 | a1i | ⊢ ( ⊤  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦  /  3 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 43 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑥 ↑ 2 )  →  ( 𝑦  /  3 )  =  ( ( 𝑥 ↑ 2 )  /  3 ) ) | 
						
							| 44 | 35 39 35 42 43 | cnmpt11 | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝑥 ↑ 2 )  /  3 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 45 | 33 | subcn | ⊢  −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 46 | 45 | a1i | ⊢ ( ⊤  →   −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 47 | 35 37 44 46 | cnmpt12f | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  ( 1  −  ( ( 𝑥 ↑ 2 )  /  3 ) ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 48 | 47 | mptru | ⊢ ( 𝑥  ∈  ℂ  ↦  ( 1  −  ( ( 𝑥 ↑ 2 )  /  3 ) ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 49 | 33 | cncfcn1 | ⊢ ( ℂ –cn→ ℂ )  =  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 50 | 48 4 49 | 3eltr4i | ⊢ 𝐻  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 51 |  | cncfi | ⊢ ( ( 𝐻  ∈  ( ℂ –cn→ ℂ )  ∧  0  ∈  ℂ  ∧  𝑦  ∈  ℝ+ )  →  ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈  ℂ ( ( abs ‘ ( 𝑤  −  0 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐻 ‘ 𝑤 )  −  ( 𝐻 ‘ 0 ) ) )  <  𝑦 ) ) | 
						
							| 52 | 50 51 | mp3an1 | ⊢ ( ( 0  ∈  ℂ  ∧  𝑦  ∈  ℝ+ )  →  ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈  ℂ ( ( abs ‘ ( 𝑤  −  0 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐻 ‘ 𝑤 )  −  ( 𝐻 ‘ 0 ) ) )  <  𝑦 ) ) | 
						
							| 53 |  | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑘 )  =  ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 54 | 1 53 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑘 )  =  ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 55 | 17 54 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑘 )  =  ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 56 | 7 2 14 8 22 32 52 55 | climcn1lem | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 )  ⇝  ( 𝐻 ‘ 0 ) ) | 
						
							| 57 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 58 |  | sq0i | ⊢ ( 𝑥  =  0  →  ( 𝑥 ↑ 2 )  =  0 ) | 
						
							| 59 | 58 | oveq1d | ⊢ ( 𝑥  =  0  →  ( ( 𝑥 ↑ 2 )  /  3 )  =  ( 0  /  3 ) ) | 
						
							| 60 | 25 26 | div0i | ⊢ ( 0  /  3 )  =  0 | 
						
							| 61 | 59 60 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( ( 𝑥 ↑ 2 )  /  3 )  =  0 ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( 𝑥  =  0  →  ( 1  −  ( ( 𝑥 ↑ 2 )  /  3 ) )  =  ( 1  −  0 ) ) | 
						
							| 63 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 64 | 62 63 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( 1  −  ( ( 𝑥 ↑ 2 )  /  3 ) )  =  1 ) | 
						
							| 65 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 66 | 64 4 65 | fvmpt | ⊢ ( 0  ∈  ℂ  →  ( 𝐻 ‘ 0 )  =  1 ) | 
						
							| 67 | 57 66 | ax-mp | ⊢ ( 𝐻 ‘ 0 )  =  1 | 
						
							| 68 | 56 67 | breqtrdi | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 )  ⇝  1 ) | 
						
							| 69 | 3 | funmpt2 | ⊢ Fun  𝐺 | 
						
							| 70 |  | cofunexg | ⊢ ( ( Fun  𝐺  ∧  𝐹  ∈  V )  →  ( 𝐺  ∘  𝐹 )  ∈  V ) | 
						
							| 71 | 69 12 70 | sylancr | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝐹 )  ∈  V ) | 
						
							| 72 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑘 )  →  ( 𝑥 ↑ 2 )  =  ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) ) | 
						
							| 73 | 72 | oveq1d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑘 )  →  ( ( 𝑥 ↑ 2 )  /  3 )  =  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑘 )  →  ( 1  −  ( ( 𝑥 ↑ 2 )  /  3 ) )  =  ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) ) ) | 
						
							| 75 |  | ovex | ⊢ ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  ∈  V | 
						
							| 76 | 74 4 75 | fvmpt | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) ) ) | 
						
							| 77 | 22 76 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) ) ) | 
						
							| 78 | 55 77 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑘 )  =  ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) ) ) | 
						
							| 79 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 80 | 21 | resqcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 81 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 82 |  | nndivre | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  ∈  ℝ  ∧  3  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 )  ∈  ℝ ) | 
						
							| 83 | 80 81 82 | sylancl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 )  ∈  ℝ ) | 
						
							| 84 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 )  ∈  ℝ )  →  ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  ∈  ℝ ) | 
						
							| 85 | 79 83 84 | sylancr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  ∈  ℝ ) | 
						
							| 86 | 78 85 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 87 |  | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑘 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 88 | 1 87 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑘 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 89 | 17 88 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑘 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 90 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑘 )  →  ( sin ‘ 𝑥 )  =  ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 91 |  | id | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑘 )  →  𝑥  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 92 | 90 91 | oveq12d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑘 )  →  ( ( sin ‘ 𝑥 )  /  𝑥 )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 93 |  | ovex | ⊢ ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) )  ∈  V | 
						
							| 94 | 92 3 93 | fvmpt | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ( ℝ  ∖  { 0 } )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 95 | 18 94 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 96 | 89 95 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑘 )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 97 | 21 | resincld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 98 | 20 | simprd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  ≠  0 ) | 
						
							| 99 | 97 21 98 | redivcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 100 | 96 99 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 101 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  1  ∈  ℂ ) | 
						
							| 102 | 83 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 )  ∈  ℂ ) | 
						
							| 103 | 22 | abscld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 104 | 103 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 105 | 101 102 104 | subdird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( 1  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  −  ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 106 | 104 | mullidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 107 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 108 | 107 | oveq2i | ⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 )  =  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ ( 2  +  1 ) ) | 
						
							| 109 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 110 |  | expp1 | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℂ  ∧  2  ∈  ℕ0 )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ ( 2  +  1 ) )  =  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 2 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 111 | 104 109 110 | sylancl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ ( 2  +  1 ) )  =  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 2 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 112 |  | absresq | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) ) | 
						
							| 113 | 21 112 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) ) | 
						
							| 114 | 113 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 2 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 115 | 111 114 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ ( 2  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 116 | 108 115 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 )  =  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 117 | 116 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 )  /  3 )  =  ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  3 ) ) | 
						
							| 118 | 80 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 119 | 25 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  3  ∈  ℂ ) | 
						
							| 120 | 26 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  3  ≠  0 ) | 
						
							| 121 | 118 104 119 120 | div23d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  3 )  =  ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 122 | 117 121 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 )  /  3 ) ) | 
						
							| 123 | 106 122 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 1  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  −  ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  −  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 )  /  3 ) ) ) | 
						
							| 124 | 105 123 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  −  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 )  /  3 ) ) ) | 
						
							| 125 | 22 98 | absrpcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ+ ) | 
						
							| 126 | 125 | rpgt0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  0  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 127 |  | ltle | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  1 ) ) | 
						
							| 128 | 103 79 127 | sylancl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  1 ) ) | 
						
							| 129 | 6 128 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  1 ) | 
						
							| 130 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 131 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ( 0 (,] 1 )  ↔  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  0  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  1 ) ) ) | 
						
							| 132 | 130 79 131 | mp2an | ⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ( 0 (,] 1 )  ↔  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  0  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  1 ) ) | 
						
							| 133 | 103 126 129 132 | syl3anbrc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ( 0 (,] 1 ) ) | 
						
							| 134 |  | sin01bnd | ⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ( 0 (,] 1 )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  −  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 )  /  3 ) )  <  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  ∧  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 135 | 133 134 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  −  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 )  /  3 ) )  <  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  ∧  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 136 | 135 | simpld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  −  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 )  /  3 ) )  <  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 137 | 124 136 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  <  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 138 | 103 | resincld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 139 | 85 138 125 | ltmuldivd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  <  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  ↔  ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  <  ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 140 | 137 139 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  <  ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 141 |  | fveq2 | ⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 )  →  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 142 |  | id | ⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 143 | 141 142 | oveq12d | ⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 )  →  ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 144 | 143 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 )  →  ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 145 |  | sinneg | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( sin ‘ - ( 𝐹 ‘ 𝑘 ) )  =  - ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 146 | 22 145 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( sin ‘ - ( 𝐹 ‘ 𝑘 ) )  =  - ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 147 | 146 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( sin ‘ - ( 𝐹 ‘ 𝑘 ) )  /  - ( 𝐹 ‘ 𝑘 ) )  =  ( - ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  - ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 148 | 97 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 149 | 148 22 98 | div2negd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( - ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  - ( 𝐹 ‘ 𝑘 ) )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 150 | 147 149 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( sin ‘ - ( 𝐹 ‘ 𝑘 ) )  /  - ( 𝐹 ‘ 𝑘 ) )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 151 |  | fveq2 | ⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  - ( 𝐹 ‘ 𝑘 )  →  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( sin ‘ - ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 152 |  | id | ⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  - ( 𝐹 ‘ 𝑘 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  - ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 153 | 151 152 | oveq12d | ⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  - ( 𝐹 ‘ 𝑘 )  →  ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( sin ‘ - ( 𝐹 ‘ 𝑘 ) )  /  - ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 154 | 153 | eqeq1d | ⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  - ( 𝐹 ‘ 𝑘 )  →  ( ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) )  ↔  ( ( sin ‘ - ( 𝐹 ‘ 𝑘 ) )  /  - ( 𝐹 ‘ 𝑘 ) )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 155 | 150 154 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  - ( 𝐹 ‘ 𝑘 )  →  ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 156 | 21 | absord | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 )  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  - ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 157 | 144 155 156 | mpjaod | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 158 | 140 157 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  <  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 159 | 85 99 158 | ltled | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  −  ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 )  /  3 ) )  ≤  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 160 | 159 78 96 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑘 )  ≤  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 161 | 79 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  1  ∈  ℝ ) | 
						
							| 162 | 135 | simprd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 163 | 104 | mulridd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ·  1 )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 164 | 162 163 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  <  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ·  1 ) ) | 
						
							| 165 | 138 161 125 | ltdivmuld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  <  1  ↔  ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  <  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ·  1 ) ) ) | 
						
							| 166 | 164 165 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  /  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  <  1 ) | 
						
							| 167 | 157 166 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) )  <  1 ) | 
						
							| 168 | 99 161 167 | ltled | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) )  /  ( 𝐹 ‘ 𝑘 ) )  ≤  1 ) | 
						
							| 169 | 96 168 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑘 )  ≤  1 ) | 
						
							| 170 | 7 8 68 71 86 100 160 169 | climsqz | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝐹 )  ⇝  1 ) |