| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sinccvg.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ) |
| 2 |
|
sinccvg.2 |
⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |
| 3 |
|
sinccvg.3 |
⊢ 𝐺 = ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↦ ( ( sin ‘ 𝑥 ) / 𝑥 ) ) |
| 4 |
|
sinccvg.4 |
⊢ 𝐻 = ( 𝑥 ∈ ℂ ↦ ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) ) |
| 5 |
|
sinccvg.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 6 |
|
sinccvg.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ) |
| 7 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
| 8 |
5
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 9 |
4
|
funmpt2 |
⊢ Fun 𝐻 |
| 10 |
|
nnex |
⊢ ℕ ∈ V |
| 11 |
|
fex |
⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ ℕ ∈ V ) → 𝐹 ∈ V ) |
| 12 |
1 10 11
|
sylancl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 13 |
|
cofunexg |
⊢ ( ( Fun 𝐻 ∧ 𝐹 ∈ V ) → ( 𝐻 ∘ 𝐹 ) ∈ V ) |
| 14 |
9 12 13
|
sylancr |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ V ) |
| 15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ) |
| 16 |
|
eluznn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) |
| 17 |
5 16
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) |
| 18 |
15 17
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℝ ∖ { 0 } ) ) |
| 19 |
|
eldifsn |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℝ ∖ { 0 } ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ) |
| 20 |
18 19
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ) |
| 21 |
20
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 22 |
21
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 23 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 24 |
|
sqcl |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 2 ) ∈ ℂ ) |
| 25 |
|
3cn |
⊢ 3 ∈ ℂ |
| 26 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 27 |
|
divcl |
⊢ ( ( ( 𝑥 ↑ 2 ) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( ( 𝑥 ↑ 2 ) / 3 ) ∈ ℂ ) |
| 28 |
25 26 27
|
mp3an23 |
⊢ ( ( 𝑥 ↑ 2 ) ∈ ℂ → ( ( 𝑥 ↑ 2 ) / 3 ) ∈ ℂ ) |
| 29 |
24 28
|
syl |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 ↑ 2 ) / 3 ) ∈ ℂ ) |
| 30 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) / 3 ) ∈ ℂ ) → ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) ∈ ℂ ) |
| 31 |
23 29 30
|
sylancr |
⊢ ( 𝑥 ∈ ℂ → ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) ∈ ℂ ) |
| 32 |
4 31
|
fmpti |
⊢ 𝐻 : ℂ ⟶ ℂ |
| 33 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 34 |
33
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 35 |
34
|
a1i |
⊢ ( ⊤ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 36 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
| 37 |
35 35 36
|
cnmptc |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 38 |
33
|
sqcn |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 39 |
38
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 40 |
33
|
divccn |
⊢ ( ( 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦 / 3 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 41 |
25 26 40
|
mp2an |
⊢ ( 𝑦 ∈ ℂ ↦ ( 𝑦 / 3 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 42 |
41
|
a1i |
⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ ( 𝑦 / 3 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 43 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 ↑ 2 ) → ( 𝑦 / 3 ) = ( ( 𝑥 ↑ 2 ) / 3 ) ) |
| 44 |
35 39 35 42 43
|
cnmpt11 |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( ( 𝑥 ↑ 2 ) / 3 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 45 |
33
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 46 |
45
|
a1i |
⊢ ( ⊤ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 47 |
35 37 44 46
|
cnmpt12f |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 48 |
47
|
mptru |
⊢ ( 𝑥 ∈ ℂ ↦ ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 49 |
33
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 50 |
48 4 49
|
3eltr4i |
⊢ 𝐻 ∈ ( ℂ –cn→ ℂ ) |
| 51 |
|
cncfi |
⊢ ( ( 𝐻 ∈ ( ℂ –cn→ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℂ ( ( abs ‘ ( 𝑤 − 0 ) ) < 𝑧 → ( abs ‘ ( ( 𝐻 ‘ 𝑤 ) − ( 𝐻 ‘ 0 ) ) ) < 𝑦 ) ) |
| 52 |
50 51
|
mp3an1 |
⊢ ( ( 0 ∈ ℂ ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℂ ( ( abs ‘ ( 𝑤 − 0 ) ) < 𝑧 → ( abs ‘ ( ( 𝐻 ‘ 𝑤 ) − ( 𝐻 ‘ 0 ) ) ) < 𝑦 ) ) |
| 53 |
|
fvco3 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 54 |
1 53
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 55 |
17 54
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 56 |
7 2 14 8 22 32 52 55
|
climcn1lem |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ⇝ ( 𝐻 ‘ 0 ) ) |
| 57 |
|
0cn |
⊢ 0 ∈ ℂ |
| 58 |
|
sq0i |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 2 ) = 0 ) |
| 59 |
58
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 2 ) / 3 ) = ( 0 / 3 ) ) |
| 60 |
25 26
|
div0i |
⊢ ( 0 / 3 ) = 0 |
| 61 |
59 60
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 2 ) / 3 ) = 0 ) |
| 62 |
61
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) = ( 1 − 0 ) ) |
| 63 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 64 |
62 63
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) = 1 ) |
| 65 |
|
1ex |
⊢ 1 ∈ V |
| 66 |
64 4 65
|
fvmpt |
⊢ ( 0 ∈ ℂ → ( 𝐻 ‘ 0 ) = 1 ) |
| 67 |
57 66
|
ax-mp |
⊢ ( 𝐻 ‘ 0 ) = 1 |
| 68 |
56 67
|
breqtrdi |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ⇝ 1 ) |
| 69 |
3
|
funmpt2 |
⊢ Fun 𝐺 |
| 70 |
|
cofunexg |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ∈ V ) → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
| 71 |
69 12 70
|
sylancr |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
| 72 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 𝑥 ↑ 2 ) = ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) ) |
| 73 |
72
|
oveq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( ( 𝑥 ↑ 2 ) / 3 ) = ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) |
| 74 |
73
|
oveq2d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) = ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) ) |
| 75 |
|
ovex |
⊢ ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) ∈ V |
| 76 |
74 4 75
|
fvmpt |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) ) |
| 77 |
22 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) ) |
| 78 |
55 77
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) = ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) ) |
| 79 |
|
1re |
⊢ 1 ∈ ℝ |
| 80 |
21
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) ∈ ℝ ) |
| 81 |
|
3nn |
⊢ 3 ∈ ℕ |
| 82 |
|
nndivre |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ∈ ℝ ) |
| 83 |
80 81 82
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ∈ ℝ ) |
| 84 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ∈ ℝ ) → ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) |
| 85 |
79 83 84
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) |
| 86 |
78 85
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) ∈ ℝ ) |
| 87 |
|
fvco3 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 88 |
1 87
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 89 |
17 88
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 90 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( sin ‘ 𝑥 ) = ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 91 |
|
id |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → 𝑥 = ( 𝐹 ‘ 𝑘 ) ) |
| 92 |
90 91
|
oveq12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( ( sin ‘ 𝑥 ) / 𝑥 ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) |
| 93 |
|
ovex |
⊢ ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 94 |
92 3 93
|
fvmpt |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℝ ∖ { 0 } ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) |
| 95 |
18 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) |
| 96 |
89 95
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) |
| 97 |
21
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 98 |
20
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) |
| 99 |
97 21 98
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 100 |
96 99
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ ℝ ) |
| 101 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ∈ ℂ ) |
| 102 |
83
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ∈ ℂ ) |
| 103 |
22
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 104 |
103
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 105 |
101 102 104
|
subdird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( 1 · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) − ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 106 |
104
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 107 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 108 |
107
|
oveq2i |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 ) = ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ ( 2 + 1 ) ) |
| 109 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 110 |
|
expp1 |
⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ ( 2 + 1 ) ) = ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 111 |
104 109 110
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ ( 2 + 1 ) ) = ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 112 |
|
absresq |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 2 ) = ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) ) |
| 113 |
21 112
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 2 ) = ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) ) |
| 114 |
113
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 115 |
111 114
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ ( 2 + 1 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 116 |
108 115
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 ) = ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 117 |
116
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 ) / 3 ) = ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / 3 ) ) |
| 118 |
80
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) ∈ ℂ ) |
| 119 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 3 ∈ ℂ ) |
| 120 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 3 ≠ 0 ) |
| 121 |
118 104 119 120
|
div23d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / 3 ) = ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 122 |
117 121
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 ) / 3 ) ) |
| 123 |
106 122
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 1 · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) − ( ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) − ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 ) / 3 ) ) ) |
| 124 |
105 123
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) − ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 ) / 3 ) ) ) |
| 125 |
22 98
|
absrpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ+ ) |
| 126 |
125
|
rpgt0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 127 |
|
ltle |
⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 1 ) ) |
| 128 |
103 79 127
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 1 ) ) |
| 129 |
6 128
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 1 ) |
| 130 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 131 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 0 (,] 1 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 0 < ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 1 ) ) ) |
| 132 |
130 79 131
|
mp2an |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 0 (,] 1 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 0 < ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 1 ) ) |
| 133 |
103 126 129 132
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 0 (,] 1 ) ) |
| 134 |
|
sin01bnd |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 0 (,] 1 ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) − ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 ) / 3 ) ) < ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 135 |
133 134
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) − ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 ) / 3 ) ) < ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 136 |
135
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) − ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ↑ 3 ) / 3 ) ) < ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 137 |
124 136
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 138 |
103
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 139 |
85 138 125
|
ltmuldivd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) < ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 140 |
137 139
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) < ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 141 |
|
fveq2 |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) → ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 142 |
|
id |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 143 |
141 142
|
oveq12d |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) → ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) |
| 144 |
143
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) → ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 145 |
|
sinneg |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( sin ‘ - ( 𝐹 ‘ 𝑘 ) ) = - ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 146 |
22 145
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( sin ‘ - ( 𝐹 ‘ 𝑘 ) ) = - ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 147 |
146
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( sin ‘ - ( 𝐹 ‘ 𝑘 ) ) / - ( 𝐹 ‘ 𝑘 ) ) = ( - ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / - ( 𝐹 ‘ 𝑘 ) ) ) |
| 148 |
97
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 149 |
148 22 98
|
div2negd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( - ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / - ( 𝐹 ‘ 𝑘 ) ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) |
| 150 |
147 149
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( sin ‘ - ( 𝐹 ‘ 𝑘 ) ) / - ( 𝐹 ‘ 𝑘 ) ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) |
| 151 |
|
fveq2 |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = - ( 𝐹 ‘ 𝑘 ) → ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( sin ‘ - ( 𝐹 ‘ 𝑘 ) ) ) |
| 152 |
|
id |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = - ( 𝐹 ‘ 𝑘 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = - ( 𝐹 ‘ 𝑘 ) ) |
| 153 |
151 152
|
oveq12d |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = - ( 𝐹 ‘ 𝑘 ) → ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( sin ‘ - ( 𝐹 ‘ 𝑘 ) ) / - ( 𝐹 ‘ 𝑘 ) ) ) |
| 154 |
153
|
eqeq1d |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = - ( 𝐹 ‘ 𝑘 ) → ( ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ↔ ( ( sin ‘ - ( 𝐹 ‘ 𝑘 ) ) / - ( 𝐹 ‘ 𝑘 ) ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 155 |
150 154
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = - ( 𝐹 ‘ 𝑘 ) → ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 156 |
21
|
absord |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = - ( 𝐹 ‘ 𝑘 ) ) ) |
| 157 |
144 155 156
|
mpjaod |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) |
| 158 |
140 157
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) < ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) |
| 159 |
85 99 158
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 − ( ( ( 𝐹 ‘ 𝑘 ) ↑ 2 ) / 3 ) ) ≤ ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ) |
| 160 |
159 78 96
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) ≤ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ) |
| 161 |
79
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ∈ ℝ ) |
| 162 |
135
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 163 |
104
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) · 1 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 164 |
162 163
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) · 1 ) ) |
| 165 |
138 161 125
|
ltdivmuld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < 1 ↔ ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) · 1 ) ) ) |
| 166 |
164 165
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( sin ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) / ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < 1 ) |
| 167 |
157 166
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) < 1 ) |
| 168 |
99 161 167
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( sin ‘ ( 𝐹 ‘ 𝑘 ) ) / ( 𝐹 ‘ 𝑘 ) ) ≤ 1 ) |
| 169 |
96 168
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ≤ 1 ) |
| 170 |
7 8 68 71 86 100 160 169
|
climsqz |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ⇝ 1 ) |