| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sinccvg.1 |  |-  ( ph -> F : NN --> ( RR \ { 0 } ) ) | 
						
							| 2 |  | sinccvg.2 |  |-  ( ph -> F ~~> 0 ) | 
						
							| 3 |  | sinccvg.3 |  |-  G = ( x e. ( RR \ { 0 } ) |-> ( ( sin ` x ) / x ) ) | 
						
							| 4 |  | sinccvg.4 |  |-  H = ( x e. CC |-> ( 1 - ( ( x ^ 2 ) / 3 ) ) ) | 
						
							| 5 |  | sinccvg.5 |  |-  ( ph -> M e. NN ) | 
						
							| 6 |  | sinccvg.6 |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( abs ` ( F ` k ) ) < 1 ) | 
						
							| 7 |  | eqid |  |-  ( ZZ>= ` M ) = ( ZZ>= ` M ) | 
						
							| 8 | 5 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 9 | 4 | funmpt2 |  |-  Fun H | 
						
							| 10 |  | nnex |  |-  NN e. _V | 
						
							| 11 |  | fex |  |-  ( ( F : NN --> ( RR \ { 0 } ) /\ NN e. _V ) -> F e. _V ) | 
						
							| 12 | 1 10 11 | sylancl |  |-  ( ph -> F e. _V ) | 
						
							| 13 |  | cofunexg |  |-  ( ( Fun H /\ F e. _V ) -> ( H o. F ) e. _V ) | 
						
							| 14 | 9 12 13 | sylancr |  |-  ( ph -> ( H o. F ) e. _V ) | 
						
							| 15 | 1 | adantr |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> F : NN --> ( RR \ { 0 } ) ) | 
						
							| 16 |  | eluznn |  |-  ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) | 
						
							| 17 | 5 16 | sylan |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) | 
						
							| 18 | 15 17 | ffvelcdmd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. ( RR \ { 0 } ) ) | 
						
							| 19 |  | eldifsn |  |-  ( ( F ` k ) e. ( RR \ { 0 } ) <-> ( ( F ` k ) e. RR /\ ( F ` k ) =/= 0 ) ) | 
						
							| 20 | 18 19 | sylib |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` k ) e. RR /\ ( F ` k ) =/= 0 ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. RR ) | 
						
							| 22 | 21 | recnd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) | 
						
							| 23 |  | ax-1cn |  |-  1 e. CC | 
						
							| 24 |  | sqcl |  |-  ( x e. CC -> ( x ^ 2 ) e. CC ) | 
						
							| 25 |  | 3cn |  |-  3 e. CC | 
						
							| 26 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 27 |  | divcl |  |-  ( ( ( x ^ 2 ) e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( ( x ^ 2 ) / 3 ) e. CC ) | 
						
							| 28 | 25 26 27 | mp3an23 |  |-  ( ( x ^ 2 ) e. CC -> ( ( x ^ 2 ) / 3 ) e. CC ) | 
						
							| 29 | 24 28 | syl |  |-  ( x e. CC -> ( ( x ^ 2 ) / 3 ) e. CC ) | 
						
							| 30 |  | subcl |  |-  ( ( 1 e. CC /\ ( ( x ^ 2 ) / 3 ) e. CC ) -> ( 1 - ( ( x ^ 2 ) / 3 ) ) e. CC ) | 
						
							| 31 | 23 29 30 | sylancr |  |-  ( x e. CC -> ( 1 - ( ( x ^ 2 ) / 3 ) ) e. CC ) | 
						
							| 32 | 4 31 | fmpti |  |-  H : CC --> CC | 
						
							| 33 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 34 | 33 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 35 | 34 | a1i |  |-  ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 36 |  | 1cnd |  |-  ( T. -> 1 e. CC ) | 
						
							| 37 | 35 35 36 | cnmptc |  |-  ( T. -> ( x e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 38 | 33 | sqcn |  |-  ( x e. CC |-> ( x ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 39 | 38 | a1i |  |-  ( T. -> ( x e. CC |-> ( x ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 40 | 33 | divccn |  |-  ( ( 3 e. CC /\ 3 =/= 0 ) -> ( y e. CC |-> ( y / 3 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 41 | 25 26 40 | mp2an |  |-  ( y e. CC |-> ( y / 3 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 42 | 41 | a1i |  |-  ( T. -> ( y e. CC |-> ( y / 3 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 43 |  | oveq1 |  |-  ( y = ( x ^ 2 ) -> ( y / 3 ) = ( ( x ^ 2 ) / 3 ) ) | 
						
							| 44 | 35 39 35 42 43 | cnmpt11 |  |-  ( T. -> ( x e. CC |-> ( ( x ^ 2 ) / 3 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 45 | 33 | subcn |  |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 46 | 45 | a1i |  |-  ( T. -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 47 | 35 37 44 46 | cnmpt12f |  |-  ( T. -> ( x e. CC |-> ( 1 - ( ( x ^ 2 ) / 3 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 48 | 47 | mptru |  |-  ( x e. CC |-> ( 1 - ( ( x ^ 2 ) / 3 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 49 | 33 | cncfcn1 |  |-  ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 50 | 48 4 49 | 3eltr4i |  |-  H e. ( CC -cn-> CC ) | 
						
							| 51 |  | cncfi |  |-  ( ( H e. ( CC -cn-> CC ) /\ 0 e. CC /\ y e. RR+ ) -> E. z e. RR+ A. w e. CC ( ( abs ` ( w - 0 ) ) < z -> ( abs ` ( ( H ` w ) - ( H ` 0 ) ) ) < y ) ) | 
						
							| 52 | 50 51 | mp3an1 |  |-  ( ( 0 e. CC /\ y e. RR+ ) -> E. z e. RR+ A. w e. CC ( ( abs ` ( w - 0 ) ) < z -> ( abs ` ( ( H ` w ) - ( H ` 0 ) ) ) < y ) ) | 
						
							| 53 |  | fvco3 |  |-  ( ( F : NN --> ( RR \ { 0 } ) /\ k e. NN ) -> ( ( H o. F ) ` k ) = ( H ` ( F ` k ) ) ) | 
						
							| 54 | 1 53 | sylan |  |-  ( ( ph /\ k e. NN ) -> ( ( H o. F ) ` k ) = ( H ` ( F ` k ) ) ) | 
						
							| 55 | 17 54 | syldan |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( H o. F ) ` k ) = ( H ` ( F ` k ) ) ) | 
						
							| 56 | 7 2 14 8 22 32 52 55 | climcn1lem |  |-  ( ph -> ( H o. F ) ~~> ( H ` 0 ) ) | 
						
							| 57 |  | 0cn |  |-  0 e. CC | 
						
							| 58 |  | sq0i |  |-  ( x = 0 -> ( x ^ 2 ) = 0 ) | 
						
							| 59 | 58 | oveq1d |  |-  ( x = 0 -> ( ( x ^ 2 ) / 3 ) = ( 0 / 3 ) ) | 
						
							| 60 | 25 26 | div0i |  |-  ( 0 / 3 ) = 0 | 
						
							| 61 | 59 60 | eqtrdi |  |-  ( x = 0 -> ( ( x ^ 2 ) / 3 ) = 0 ) | 
						
							| 62 | 61 | oveq2d |  |-  ( x = 0 -> ( 1 - ( ( x ^ 2 ) / 3 ) ) = ( 1 - 0 ) ) | 
						
							| 63 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 64 | 62 63 | eqtrdi |  |-  ( x = 0 -> ( 1 - ( ( x ^ 2 ) / 3 ) ) = 1 ) | 
						
							| 65 |  | 1ex |  |-  1 e. _V | 
						
							| 66 | 64 4 65 | fvmpt |  |-  ( 0 e. CC -> ( H ` 0 ) = 1 ) | 
						
							| 67 | 57 66 | ax-mp |  |-  ( H ` 0 ) = 1 | 
						
							| 68 | 56 67 | breqtrdi |  |-  ( ph -> ( H o. F ) ~~> 1 ) | 
						
							| 69 | 3 | funmpt2 |  |-  Fun G | 
						
							| 70 |  | cofunexg |  |-  ( ( Fun G /\ F e. _V ) -> ( G o. F ) e. _V ) | 
						
							| 71 | 69 12 70 | sylancr |  |-  ( ph -> ( G o. F ) e. _V ) | 
						
							| 72 |  | oveq1 |  |-  ( x = ( F ` k ) -> ( x ^ 2 ) = ( ( F ` k ) ^ 2 ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( x = ( F ` k ) -> ( ( x ^ 2 ) / 3 ) = ( ( ( F ` k ) ^ 2 ) / 3 ) ) | 
						
							| 74 | 73 | oveq2d |  |-  ( x = ( F ` k ) -> ( 1 - ( ( x ^ 2 ) / 3 ) ) = ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) ) | 
						
							| 75 |  | ovex |  |-  ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) e. _V | 
						
							| 76 | 74 4 75 | fvmpt |  |-  ( ( F ` k ) e. CC -> ( H ` ( F ` k ) ) = ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) ) | 
						
							| 77 | 22 76 | syl |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( H ` ( F ` k ) ) = ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) ) | 
						
							| 78 | 55 77 | eqtrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( H o. F ) ` k ) = ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) ) | 
						
							| 79 |  | 1re |  |-  1 e. RR | 
						
							| 80 | 21 | resqcld |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` k ) ^ 2 ) e. RR ) | 
						
							| 81 |  | 3nn |  |-  3 e. NN | 
						
							| 82 |  | nndivre |  |-  ( ( ( ( F ` k ) ^ 2 ) e. RR /\ 3 e. NN ) -> ( ( ( F ` k ) ^ 2 ) / 3 ) e. RR ) | 
						
							| 83 | 80 81 82 | sylancl |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( ( F ` k ) ^ 2 ) / 3 ) e. RR ) | 
						
							| 84 |  | resubcl |  |-  ( ( 1 e. RR /\ ( ( ( F ` k ) ^ 2 ) / 3 ) e. RR ) -> ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) e. RR ) | 
						
							| 85 | 79 83 84 | sylancr |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) e. RR ) | 
						
							| 86 | 78 85 | eqeltrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( H o. F ) ` k ) e. RR ) | 
						
							| 87 |  | fvco3 |  |-  ( ( F : NN --> ( RR \ { 0 } ) /\ k e. NN ) -> ( ( G o. F ) ` k ) = ( G ` ( F ` k ) ) ) | 
						
							| 88 | 1 87 | sylan |  |-  ( ( ph /\ k e. NN ) -> ( ( G o. F ) ` k ) = ( G ` ( F ` k ) ) ) | 
						
							| 89 | 17 88 | syldan |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( G o. F ) ` k ) = ( G ` ( F ` k ) ) ) | 
						
							| 90 |  | fveq2 |  |-  ( x = ( F ` k ) -> ( sin ` x ) = ( sin ` ( F ` k ) ) ) | 
						
							| 91 |  | id |  |-  ( x = ( F ` k ) -> x = ( F ` k ) ) | 
						
							| 92 | 90 91 | oveq12d |  |-  ( x = ( F ` k ) -> ( ( sin ` x ) / x ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) | 
						
							| 93 |  | ovex |  |-  ( ( sin ` ( F ` k ) ) / ( F ` k ) ) e. _V | 
						
							| 94 | 92 3 93 | fvmpt |  |-  ( ( F ` k ) e. ( RR \ { 0 } ) -> ( G ` ( F ` k ) ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) | 
						
							| 95 | 18 94 | syl |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` ( F ` k ) ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) | 
						
							| 96 | 89 95 | eqtrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( G o. F ) ` k ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) | 
						
							| 97 | 21 | resincld |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( sin ` ( F ` k ) ) e. RR ) | 
						
							| 98 | 20 | simprd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) =/= 0 ) | 
						
							| 99 | 97 21 98 | redivcld |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( sin ` ( F ` k ) ) / ( F ` k ) ) e. RR ) | 
						
							| 100 | 96 99 | eqeltrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( G o. F ) ` k ) e. RR ) | 
						
							| 101 |  | 1cnd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> 1 e. CC ) | 
						
							| 102 | 83 | recnd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( ( F ` k ) ^ 2 ) / 3 ) e. CC ) | 
						
							| 103 | 22 | abscld |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( abs ` ( F ` k ) ) e. RR ) | 
						
							| 104 | 103 | recnd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( abs ` ( F ` k ) ) e. CC ) | 
						
							| 105 | 101 102 104 | subdird |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) x. ( abs ` ( F ` k ) ) ) = ( ( 1 x. ( abs ` ( F ` k ) ) ) - ( ( ( ( F ` k ) ^ 2 ) / 3 ) x. ( abs ` ( F ` k ) ) ) ) ) | 
						
							| 106 | 104 | mullidd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( 1 x. ( abs ` ( F ` k ) ) ) = ( abs ` ( F ` k ) ) ) | 
						
							| 107 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 108 | 107 | oveq2i |  |-  ( ( abs ` ( F ` k ) ) ^ 3 ) = ( ( abs ` ( F ` k ) ) ^ ( 2 + 1 ) ) | 
						
							| 109 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 110 |  | expp1 |  |-  ( ( ( abs ` ( F ` k ) ) e. CC /\ 2 e. NN0 ) -> ( ( abs ` ( F ` k ) ) ^ ( 2 + 1 ) ) = ( ( ( abs ` ( F ` k ) ) ^ 2 ) x. ( abs ` ( F ` k ) ) ) ) | 
						
							| 111 | 104 109 110 | sylancl |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( abs ` ( F ` k ) ) ^ ( 2 + 1 ) ) = ( ( ( abs ` ( F ` k ) ) ^ 2 ) x. ( abs ` ( F ` k ) ) ) ) | 
						
							| 112 |  | absresq |  |-  ( ( F ` k ) e. RR -> ( ( abs ` ( F ` k ) ) ^ 2 ) = ( ( F ` k ) ^ 2 ) ) | 
						
							| 113 | 21 112 | syl |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( abs ` ( F ` k ) ) ^ 2 ) = ( ( F ` k ) ^ 2 ) ) | 
						
							| 114 | 113 | oveq1d |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( ( abs ` ( F ` k ) ) ^ 2 ) x. ( abs ` ( F ` k ) ) ) = ( ( ( F ` k ) ^ 2 ) x. ( abs ` ( F ` k ) ) ) ) | 
						
							| 115 | 111 114 | eqtrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( abs ` ( F ` k ) ) ^ ( 2 + 1 ) ) = ( ( ( F ` k ) ^ 2 ) x. ( abs ` ( F ` k ) ) ) ) | 
						
							| 116 | 108 115 | eqtrid |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( abs ` ( F ` k ) ) ^ 3 ) = ( ( ( F ` k ) ^ 2 ) x. ( abs ` ( F ` k ) ) ) ) | 
						
							| 117 | 116 | oveq1d |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( ( abs ` ( F ` k ) ) ^ 3 ) / 3 ) = ( ( ( ( F ` k ) ^ 2 ) x. ( abs ` ( F ` k ) ) ) / 3 ) ) | 
						
							| 118 | 80 | recnd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` k ) ^ 2 ) e. CC ) | 
						
							| 119 | 25 | a1i |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> 3 e. CC ) | 
						
							| 120 | 26 | a1i |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> 3 =/= 0 ) | 
						
							| 121 | 118 104 119 120 | div23d |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( ( ( F ` k ) ^ 2 ) x. ( abs ` ( F ` k ) ) ) / 3 ) = ( ( ( ( F ` k ) ^ 2 ) / 3 ) x. ( abs ` ( F ` k ) ) ) ) | 
						
							| 122 | 117 121 | eqtr2d |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( ( ( F ` k ) ^ 2 ) / 3 ) x. ( abs ` ( F ` k ) ) ) = ( ( ( abs ` ( F ` k ) ) ^ 3 ) / 3 ) ) | 
						
							| 123 | 106 122 | oveq12d |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( 1 x. ( abs ` ( F ` k ) ) ) - ( ( ( ( F ` k ) ^ 2 ) / 3 ) x. ( abs ` ( F ` k ) ) ) ) = ( ( abs ` ( F ` k ) ) - ( ( ( abs ` ( F ` k ) ) ^ 3 ) / 3 ) ) ) | 
						
							| 124 | 105 123 | eqtrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) x. ( abs ` ( F ` k ) ) ) = ( ( abs ` ( F ` k ) ) - ( ( ( abs ` ( F ` k ) ) ^ 3 ) / 3 ) ) ) | 
						
							| 125 | 22 98 | absrpcld |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( abs ` ( F ` k ) ) e. RR+ ) | 
						
							| 126 | 125 | rpgt0d |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> 0 < ( abs ` ( F ` k ) ) ) | 
						
							| 127 |  | ltle |  |-  ( ( ( abs ` ( F ` k ) ) e. RR /\ 1 e. RR ) -> ( ( abs ` ( F ` k ) ) < 1 -> ( abs ` ( F ` k ) ) <_ 1 ) ) | 
						
							| 128 | 103 79 127 | sylancl |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( abs ` ( F ` k ) ) < 1 -> ( abs ` ( F ` k ) ) <_ 1 ) ) | 
						
							| 129 | 6 128 | mpd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( abs ` ( F ` k ) ) <_ 1 ) | 
						
							| 130 |  | 0xr |  |-  0 e. RR* | 
						
							| 131 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( ( abs ` ( F ` k ) ) e. ( 0 (,] 1 ) <-> ( ( abs ` ( F ` k ) ) e. RR /\ 0 < ( abs ` ( F ` k ) ) /\ ( abs ` ( F ` k ) ) <_ 1 ) ) ) | 
						
							| 132 | 130 79 131 | mp2an |  |-  ( ( abs ` ( F ` k ) ) e. ( 0 (,] 1 ) <-> ( ( abs ` ( F ` k ) ) e. RR /\ 0 < ( abs ` ( F ` k ) ) /\ ( abs ` ( F ` k ) ) <_ 1 ) ) | 
						
							| 133 | 103 126 129 132 | syl3anbrc |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( abs ` ( F ` k ) ) e. ( 0 (,] 1 ) ) | 
						
							| 134 |  | sin01bnd |  |-  ( ( abs ` ( F ` k ) ) e. ( 0 (,] 1 ) -> ( ( ( abs ` ( F ` k ) ) - ( ( ( abs ` ( F ` k ) ) ^ 3 ) / 3 ) ) < ( sin ` ( abs ` ( F ` k ) ) ) /\ ( sin ` ( abs ` ( F ` k ) ) ) < ( abs ` ( F ` k ) ) ) ) | 
						
							| 135 | 133 134 | syl |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( ( abs ` ( F ` k ) ) - ( ( ( abs ` ( F ` k ) ) ^ 3 ) / 3 ) ) < ( sin ` ( abs ` ( F ` k ) ) ) /\ ( sin ` ( abs ` ( F ` k ) ) ) < ( abs ` ( F ` k ) ) ) ) | 
						
							| 136 | 135 | simpld |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( abs ` ( F ` k ) ) - ( ( ( abs ` ( F ` k ) ) ^ 3 ) / 3 ) ) < ( sin ` ( abs ` ( F ` k ) ) ) ) | 
						
							| 137 | 124 136 | eqbrtrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) x. ( abs ` ( F ` k ) ) ) < ( sin ` ( abs ` ( F ` k ) ) ) ) | 
						
							| 138 | 103 | resincld |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( sin ` ( abs ` ( F ` k ) ) ) e. RR ) | 
						
							| 139 | 85 138 125 | ltmuldivd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) x. ( abs ` ( F ` k ) ) ) < ( sin ` ( abs ` ( F ` k ) ) ) <-> ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) < ( ( sin ` ( abs ` ( F ` k ) ) ) / ( abs ` ( F ` k ) ) ) ) ) | 
						
							| 140 | 137 139 | mpbid |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) < ( ( sin ` ( abs ` ( F ` k ) ) ) / ( abs ` ( F ` k ) ) ) ) | 
						
							| 141 |  | fveq2 |  |-  ( ( abs ` ( F ` k ) ) = ( F ` k ) -> ( sin ` ( abs ` ( F ` k ) ) ) = ( sin ` ( F ` k ) ) ) | 
						
							| 142 |  | id |  |-  ( ( abs ` ( F ` k ) ) = ( F ` k ) -> ( abs ` ( F ` k ) ) = ( F ` k ) ) | 
						
							| 143 | 141 142 | oveq12d |  |-  ( ( abs ` ( F ` k ) ) = ( F ` k ) -> ( ( sin ` ( abs ` ( F ` k ) ) ) / ( abs ` ( F ` k ) ) ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) | 
						
							| 144 | 143 | a1i |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( abs ` ( F ` k ) ) = ( F ` k ) -> ( ( sin ` ( abs ` ( F ` k ) ) ) / ( abs ` ( F ` k ) ) ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) ) | 
						
							| 145 |  | sinneg |  |-  ( ( F ` k ) e. CC -> ( sin ` -u ( F ` k ) ) = -u ( sin ` ( F ` k ) ) ) | 
						
							| 146 | 22 145 | syl |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( sin ` -u ( F ` k ) ) = -u ( sin ` ( F ` k ) ) ) | 
						
							| 147 | 146 | oveq1d |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( sin ` -u ( F ` k ) ) / -u ( F ` k ) ) = ( -u ( sin ` ( F ` k ) ) / -u ( F ` k ) ) ) | 
						
							| 148 | 97 | recnd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( sin ` ( F ` k ) ) e. CC ) | 
						
							| 149 | 148 22 98 | div2negd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( -u ( sin ` ( F ` k ) ) / -u ( F ` k ) ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) | 
						
							| 150 | 147 149 | eqtrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( sin ` -u ( F ` k ) ) / -u ( F ` k ) ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) | 
						
							| 151 |  | fveq2 |  |-  ( ( abs ` ( F ` k ) ) = -u ( F ` k ) -> ( sin ` ( abs ` ( F ` k ) ) ) = ( sin ` -u ( F ` k ) ) ) | 
						
							| 152 |  | id |  |-  ( ( abs ` ( F ` k ) ) = -u ( F ` k ) -> ( abs ` ( F ` k ) ) = -u ( F ` k ) ) | 
						
							| 153 | 151 152 | oveq12d |  |-  ( ( abs ` ( F ` k ) ) = -u ( F ` k ) -> ( ( sin ` ( abs ` ( F ` k ) ) ) / ( abs ` ( F ` k ) ) ) = ( ( sin ` -u ( F ` k ) ) / -u ( F ` k ) ) ) | 
						
							| 154 | 153 | eqeq1d |  |-  ( ( abs ` ( F ` k ) ) = -u ( F ` k ) -> ( ( ( sin ` ( abs ` ( F ` k ) ) ) / ( abs ` ( F ` k ) ) ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) <-> ( ( sin ` -u ( F ` k ) ) / -u ( F ` k ) ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) ) | 
						
							| 155 | 150 154 | syl5ibrcom |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( abs ` ( F ` k ) ) = -u ( F ` k ) -> ( ( sin ` ( abs ` ( F ` k ) ) ) / ( abs ` ( F ` k ) ) ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) ) | 
						
							| 156 | 21 | absord |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( abs ` ( F ` k ) ) = ( F ` k ) \/ ( abs ` ( F ` k ) ) = -u ( F ` k ) ) ) | 
						
							| 157 | 144 155 156 | mpjaod |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( sin ` ( abs ` ( F ` k ) ) ) / ( abs ` ( F ` k ) ) ) = ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) | 
						
							| 158 | 140 157 | breqtrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) < ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) | 
						
							| 159 | 85 99 158 | ltled |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( 1 - ( ( ( F ` k ) ^ 2 ) / 3 ) ) <_ ( ( sin ` ( F ` k ) ) / ( F ` k ) ) ) | 
						
							| 160 | 159 78 96 | 3brtr4d |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( H o. F ) ` k ) <_ ( ( G o. F ) ` k ) ) | 
						
							| 161 | 79 | a1i |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> 1 e. RR ) | 
						
							| 162 | 135 | simprd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( sin ` ( abs ` ( F ` k ) ) ) < ( abs ` ( F ` k ) ) ) | 
						
							| 163 | 104 | mulridd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( abs ` ( F ` k ) ) x. 1 ) = ( abs ` ( F ` k ) ) ) | 
						
							| 164 | 162 163 | breqtrrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( sin ` ( abs ` ( F ` k ) ) ) < ( ( abs ` ( F ` k ) ) x. 1 ) ) | 
						
							| 165 | 138 161 125 | ltdivmuld |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( ( sin ` ( abs ` ( F ` k ) ) ) / ( abs ` ( F ` k ) ) ) < 1 <-> ( sin ` ( abs ` ( F ` k ) ) ) < ( ( abs ` ( F ` k ) ) x. 1 ) ) ) | 
						
							| 166 | 164 165 | mpbird |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( sin ` ( abs ` ( F ` k ) ) ) / ( abs ` ( F ` k ) ) ) < 1 ) | 
						
							| 167 | 157 166 | eqbrtrrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( sin ` ( F ` k ) ) / ( F ` k ) ) < 1 ) | 
						
							| 168 | 99 161 167 | ltled |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( sin ` ( F ` k ) ) / ( F ` k ) ) <_ 1 ) | 
						
							| 169 | 96 168 | eqbrtrd |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( G o. F ) ` k ) <_ 1 ) | 
						
							| 170 | 7 8 68 71 86 100 160 169 | climsqz |  |-  ( ph -> ( G o. F ) ~~> 1 ) |