Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|- 0 e. RR* |
2 |
|
1re |
|- 1 e. RR |
3 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
4 |
1 2 3
|
mp2an |
|- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
5 |
4
|
simp1bi |
|- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
6 |
|
3nn0 |
|- 3 e. NN0 |
7 |
|
reexpcl |
|- ( ( A e. RR /\ 3 e. NN0 ) -> ( A ^ 3 ) e. RR ) |
8 |
5 6 7
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) e. RR ) |
9 |
|
6nn |
|- 6 e. NN |
10 |
|
nndivre |
|- ( ( ( A ^ 3 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 3 ) / 6 ) e. RR ) |
11 |
8 9 10
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 6 ) e. RR ) |
12 |
5 11
|
resubcld |
|- ( A e. ( 0 (,] 1 ) -> ( A - ( ( A ^ 3 ) / 6 ) ) e. RR ) |
13 |
12
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( A - ( ( A ^ 3 ) / 6 ) ) e. CC ) |
14 |
|
ax-icn |
|- _i e. CC |
15 |
5
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> A e. CC ) |
16 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
17 |
14 15 16
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( _i x. A ) e. CC ) |
18 |
|
4nn0 |
|- 4 e. NN0 |
19 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
20 |
19
|
eftlcl |
|- ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
21 |
17 18 20
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
22 |
21
|
imcld |
|- ( A e. ( 0 (,] 1 ) -> ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) |
23 |
22
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. CC ) |
24 |
19
|
resin4p |
|- ( A e. RR -> ( sin ` A ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
25 |
5 24
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( sin ` A ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
26 |
13 23 25
|
mvrladdd |
|- ( A e. ( 0 (,] 1 ) -> ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) = ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
27 |
26
|
fveq2d |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) = ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
28 |
23
|
abscld |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) e. RR ) |
29 |
21
|
abscld |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) |
30 |
|
absimle |
|- ( sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
31 |
21 30
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
32 |
|
reexpcl |
|- ( ( A e. RR /\ 4 e. NN0 ) -> ( A ^ 4 ) e. RR ) |
33 |
5 18 32
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR ) |
34 |
|
nndivre |
|- ( ( ( A ^ 4 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
35 |
33 9 34
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
36 |
19
|
ef01bndlem |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 4 ) / 6 ) ) |
37 |
6
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 3 e. NN0 ) |
38 |
|
4z |
|- 4 e. ZZ |
39 |
|
3re |
|- 3 e. RR |
40 |
|
4re |
|- 4 e. RR |
41 |
|
3lt4 |
|- 3 < 4 |
42 |
39 40 41
|
ltleii |
|- 3 <_ 4 |
43 |
|
3z |
|- 3 e. ZZ |
44 |
43
|
eluz1i |
|- ( 4 e. ( ZZ>= ` 3 ) <-> ( 4 e. ZZ /\ 3 <_ 4 ) ) |
45 |
38 42 44
|
mpbir2an |
|- 4 e. ( ZZ>= ` 3 ) |
46 |
45
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 4 e. ( ZZ>= ` 3 ) ) |
47 |
4
|
simp2bi |
|- ( A e. ( 0 (,] 1 ) -> 0 < A ) |
48 |
|
0re |
|- 0 e. RR |
49 |
|
ltle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
50 |
48 5 49
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( 0 < A -> 0 <_ A ) ) |
51 |
47 50
|
mpd |
|- ( A e. ( 0 (,] 1 ) -> 0 <_ A ) |
52 |
4
|
simp3bi |
|- ( A e. ( 0 (,] 1 ) -> A <_ 1 ) |
53 |
5 37 46 51 52
|
leexp2rd |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) <_ ( A ^ 3 ) ) |
54 |
|
6re |
|- 6 e. RR |
55 |
54
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 6 e. RR ) |
56 |
|
6pos |
|- 0 < 6 |
57 |
56
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 0 < 6 ) |
58 |
|
lediv1 |
|- ( ( ( A ^ 4 ) e. RR /\ ( A ^ 3 ) e. RR /\ ( 6 e. RR /\ 0 < 6 ) ) -> ( ( A ^ 4 ) <_ ( A ^ 3 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 3 ) / 6 ) ) ) |
59 |
33 8 55 57 58
|
syl112anc |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) <_ ( A ^ 3 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 3 ) / 6 ) ) ) |
60 |
53 59
|
mpbid |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 3 ) / 6 ) ) |
61 |
29 35 11 36 60
|
ltletrd |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 3 ) / 6 ) ) |
62 |
28 29 11 31 61
|
lelttrd |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) < ( ( A ^ 3 ) / 6 ) ) |
63 |
27 62
|
eqbrtrd |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) < ( ( A ^ 3 ) / 6 ) ) |
64 |
5
|
resincld |
|- ( A e. ( 0 (,] 1 ) -> ( sin ` A ) e. RR ) |
65 |
64 12 11
|
absdifltd |
|- ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) < ( ( A ^ 3 ) / 6 ) <-> ( ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) < ( sin ` A ) /\ ( sin ` A ) < ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) ) ) ) |
66 |
11
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 6 ) e. CC ) |
67 |
15 66 66
|
subsub4d |
|- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) ) ) |
68 |
8
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) e. CC ) |
69 |
|
3cn |
|- 3 e. CC |
70 |
|
3ne0 |
|- 3 =/= 0 |
71 |
69 70
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
72 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
73 |
|
divdiv1 |
|- ( ( ( A ^ 3 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( A ^ 3 ) / 3 ) / 2 ) = ( ( A ^ 3 ) / ( 3 x. 2 ) ) ) |
74 |
71 72 73
|
mp3an23 |
|- ( ( A ^ 3 ) e. CC -> ( ( ( A ^ 3 ) / 3 ) / 2 ) = ( ( A ^ 3 ) / ( 3 x. 2 ) ) ) |
75 |
68 74
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 3 ) / 2 ) = ( ( A ^ 3 ) / ( 3 x. 2 ) ) ) |
76 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
77 |
76
|
oveq2i |
|- ( ( A ^ 3 ) / ( 3 x. 2 ) ) = ( ( A ^ 3 ) / 6 ) |
78 |
75 77
|
eqtr2di |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 6 ) = ( ( ( A ^ 3 ) / 3 ) / 2 ) ) |
79 |
78 78
|
oveq12d |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) = ( ( ( ( A ^ 3 ) / 3 ) / 2 ) + ( ( ( A ^ 3 ) / 3 ) / 2 ) ) ) |
80 |
|
3nn |
|- 3 e. NN |
81 |
|
nndivre |
|- ( ( ( A ^ 3 ) e. RR /\ 3 e. NN ) -> ( ( A ^ 3 ) / 3 ) e. RR ) |
82 |
8 80 81
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) e. RR ) |
83 |
82
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) e. CC ) |
84 |
83
|
2halvesd |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( ( A ^ 3 ) / 3 ) / 2 ) + ( ( ( A ^ 3 ) / 3 ) / 2 ) ) = ( ( A ^ 3 ) / 3 ) ) |
85 |
79 84
|
eqtrd |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) = ( ( A ^ 3 ) / 3 ) ) |
86 |
85
|
oveq2d |
|- ( A e. ( 0 (,] 1 ) -> ( A - ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) ) = ( A - ( ( A ^ 3 ) / 3 ) ) ) |
87 |
67 86
|
eqtrd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( A ^ 3 ) / 3 ) ) ) |
88 |
87
|
breq1d |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) < ( sin ` A ) <-> ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) ) ) |
89 |
15 66
|
npcand |
|- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) = A ) |
90 |
89
|
breq2d |
|- ( A e. ( 0 (,] 1 ) -> ( ( sin ` A ) < ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) <-> ( sin ` A ) < A ) ) |
91 |
88 90
|
anbi12d |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) < ( sin ` A ) /\ ( sin ` A ) < ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) ) <-> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) ) |
92 |
65 91
|
bitrd |
|- ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) < ( ( A ^ 3 ) / 6 ) <-> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) ) |
93 |
63 92
|
mpbid |
|- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) |