| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 2 |
|
1re |
⊢ 1 ∈ ℝ |
| 3 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
| 5 |
4
|
simp1bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ ) |
| 6 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 7 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) |
| 8 |
5 6 7
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) |
| 9 |
|
6nn |
⊢ 6 ∈ ℕ |
| 10 |
|
nndivre |
⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 6 ∈ ℕ ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℝ ) |
| 11 |
8 9 10
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℝ ) |
| 12 |
5 11
|
resubcld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ∈ ℝ ) |
| 13 |
12
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ∈ ℂ ) |
| 14 |
|
ax-icn |
⊢ i ∈ ℂ |
| 15 |
5
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℂ ) |
| 16 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 17 |
14 15 16
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( i · 𝐴 ) ∈ ℂ ) |
| 18 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 19 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 20 |
19
|
eftlcl |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 4 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 21 |
17 18 20
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 22 |
21
|
imcld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℂ ) |
| 24 |
19
|
resin4p |
⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 25 |
5 24
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( sin ‘ 𝐴 ) = ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 26 |
13 23 25
|
mvrladdd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) = ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 28 |
23
|
abscld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 29 |
21
|
abscld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℝ ) |
| 30 |
|
absimle |
⊢ ( Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ≤ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 31 |
21 30
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ≤ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 32 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 4 ∈ ℕ0 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) |
| 33 |
5 18 32
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) |
| 34 |
|
nndivre |
⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 6 ∈ ℕ ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) |
| 35 |
33 9 34
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) |
| 36 |
19
|
ef01bndlem |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 4 ) / 6 ) ) |
| 37 |
6
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 3 ∈ ℕ0 ) |
| 38 |
|
4z |
⊢ 4 ∈ ℤ |
| 39 |
|
3re |
⊢ 3 ∈ ℝ |
| 40 |
|
4re |
⊢ 4 ∈ ℝ |
| 41 |
|
3lt4 |
⊢ 3 < 4 |
| 42 |
39 40 41
|
ltleii |
⊢ 3 ≤ 4 |
| 43 |
|
3z |
⊢ 3 ∈ ℤ |
| 44 |
43
|
eluz1i |
⊢ ( 4 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 4 ∈ ℤ ∧ 3 ≤ 4 ) ) |
| 45 |
38 42 44
|
mpbir2an |
⊢ 4 ∈ ( ℤ≥ ‘ 3 ) |
| 46 |
45
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 4 ∈ ( ℤ≥ ‘ 3 ) ) |
| 47 |
4
|
simp2bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 𝐴 ) |
| 48 |
|
0re |
⊢ 0 ∈ ℝ |
| 49 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 50 |
48 5 49
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 51 |
47 50
|
mpd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 ≤ 𝐴 ) |
| 52 |
4
|
simp3bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ≤ 1 ) |
| 53 |
5 37 46 51 52
|
leexp2rd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 3 ) ) |
| 54 |
|
6re |
⊢ 6 ∈ ℝ |
| 55 |
54
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 6 ∈ ℝ ) |
| 56 |
|
6pos |
⊢ 0 < 6 |
| 57 |
56
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 6 ) |
| 58 |
|
lediv1 |
⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ ( 𝐴 ↑ 3 ) ∈ ℝ ∧ ( 6 ∈ ℝ ∧ 0 < 6 ) ) → ( ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 3 ) ↔ ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 59 |
33 8 55 57 58
|
syl112anc |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 3 ) ↔ ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 60 |
53 59
|
mpbid |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 3 ) / 6 ) ) |
| 61 |
29 35 11 36 60
|
ltletrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ) |
| 62 |
28 29 11 31 61
|
lelttrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ) |
| 63 |
27 62
|
eqbrtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ) |
| 64 |
5
|
resincld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 65 |
64 12 11
|
absdifltd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ↔ ( ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ) |
| 66 |
11
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) |
| 67 |
15 66 66
|
subsub4d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( 𝐴 − ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 68 |
8
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 69 |
|
3cn |
⊢ 3 ∈ ℂ |
| 70 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 71 |
69 70
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
| 72 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 73 |
|
divdiv1 |
⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) = ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) ) |
| 74 |
71 72 73
|
mp3an23 |
⊢ ( ( 𝐴 ↑ 3 ) ∈ ℂ → ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) = ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) ) |
| 75 |
68 74
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) = ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) ) |
| 76 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
| 77 |
76
|
oveq2i |
⊢ ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) = ( ( 𝐴 ↑ 3 ) / 6 ) |
| 78 |
75 77
|
eqtr2di |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 6 ) = ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) ) |
| 79 |
78 78
|
oveq12d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) + ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) ) ) |
| 80 |
|
3nn |
⊢ 3 ∈ ℕ |
| 81 |
|
nndivre |
⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) |
| 82 |
8 80 81
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) |
| 83 |
82
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℂ ) |
| 84 |
83
|
2halvesd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) + ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) ) = ( ( 𝐴 ↑ 3 ) / 3 ) ) |
| 85 |
79 84
|
eqtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( ( 𝐴 ↑ 3 ) / 3 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ) |
| 87 |
67 86
|
eqtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ) |
| 88 |
87
|
breq1d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) < ( sin ‘ 𝐴 ) ↔ ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ) ) |
| 89 |
15 66
|
npcand |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) = 𝐴 ) |
| 90 |
89
|
breq2d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( sin ‘ 𝐴 ) < ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ↔ ( sin ‘ 𝐴 ) < 𝐴 ) ) |
| 91 |
88 90
|
anbi12d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ↔ ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) ) |
| 92 |
65 91
|
bitrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ↔ ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) ) |
| 93 |
63 92
|
mpbid |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) |