Step |
Hyp |
Ref |
Expression |
1 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
2 |
|
1zzd |
|- ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) -> 1 e. ZZ ) |
3 |
|
1rp |
|- 1 e. RR+ |
4 |
3
|
a1i |
|- ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) -> 1 e. RR+ ) |
5 |
|
eqidd |
|- ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
6 |
|
simpr |
|- ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) -> F ~~> 0 ) |
7 |
1 2 4 5 6
|
climi0 |
|- ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) |
8 |
|
simpll |
|- ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) -> F : NN --> ( RR \ { 0 } ) ) |
9 |
|
simplr |
|- ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) -> F ~~> 0 ) |
10 |
|
eqid |
|- ( x e. ( RR \ { 0 } ) |-> ( ( sin ` x ) / x ) ) = ( x e. ( RR \ { 0 } ) |-> ( ( sin ` x ) / x ) ) |
11 |
|
eqid |
|- ( x e. CC |-> ( 1 - ( ( x ^ 2 ) / 3 ) ) ) = ( x e. CC |-> ( 1 - ( ( x ^ 2 ) / 3 ) ) ) |
12 |
|
simprl |
|- ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) -> j e. NN ) |
13 |
|
simprr |
|- ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) |
14 |
|
2fveq3 |
|- ( k = n -> ( abs ` ( F ` k ) ) = ( abs ` ( F ` n ) ) ) |
15 |
14
|
breq1d |
|- ( k = n -> ( ( abs ` ( F ` k ) ) < 1 <-> ( abs ` ( F ` n ) ) < 1 ) ) |
16 |
15
|
rspccva |
|- ( ( A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 /\ n e. ( ZZ>= ` j ) ) -> ( abs ` ( F ` n ) ) < 1 ) |
17 |
13 16
|
sylan |
|- ( ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) /\ n e. ( ZZ>= ` j ) ) -> ( abs ` ( F ` n ) ) < 1 ) |
18 |
8 9 10 11 12 17
|
sinccvglem |
|- ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) -> ( ( x e. ( RR \ { 0 } ) |-> ( ( sin ` x ) / x ) ) o. F ) ~~> 1 ) |
19 |
7 18
|
rexlimddv |
|- ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) -> ( ( x e. ( RR \ { 0 } ) |-> ( ( sin ` x ) / x ) ) o. F ) ~~> 1 ) |