| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 2 |  | 1zzd |  |-  ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) -> 1 e. ZZ ) | 
						
							| 3 |  | 1rp |  |-  1 e. RR+ | 
						
							| 4 | 3 | a1i |  |-  ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) -> 1 e. RR+ ) | 
						
							| 5 |  | eqidd |  |-  ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) | 
						
							| 6 |  | simpr |  |-  ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) -> F ~~> 0 ) | 
						
							| 7 | 1 2 4 5 6 | climi0 |  |-  ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) | 
						
							| 8 |  | simpll |  |-  ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) -> F : NN --> ( RR \ { 0 } ) ) | 
						
							| 9 |  | simplr |  |-  ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) -> F ~~> 0 ) | 
						
							| 10 |  | eqid |  |-  ( x e. ( RR \ { 0 } ) |-> ( ( sin ` x ) / x ) ) = ( x e. ( RR \ { 0 } ) |-> ( ( sin ` x ) / x ) ) | 
						
							| 11 |  | eqid |  |-  ( x e. CC |-> ( 1 - ( ( x ^ 2 ) / 3 ) ) ) = ( x e. CC |-> ( 1 - ( ( x ^ 2 ) / 3 ) ) ) | 
						
							| 12 |  | simprl |  |-  ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) -> j e. NN ) | 
						
							| 13 |  | simprr |  |-  ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) | 
						
							| 14 |  | 2fveq3 |  |-  ( k = n -> ( abs ` ( F ` k ) ) = ( abs ` ( F ` n ) ) ) | 
						
							| 15 | 14 | breq1d |  |-  ( k = n -> ( ( abs ` ( F ` k ) ) < 1 <-> ( abs ` ( F ` n ) ) < 1 ) ) | 
						
							| 16 | 15 | rspccva |  |-  ( ( A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 /\ n e. ( ZZ>= ` j ) ) -> ( abs ` ( F ` n ) ) < 1 ) | 
						
							| 17 | 13 16 | sylan |  |-  ( ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) /\ n e. ( ZZ>= ` j ) ) -> ( abs ` ( F ` n ) ) < 1 ) | 
						
							| 18 | 8 9 10 11 12 17 | sinccvglem |  |-  ( ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) /\ ( j e. NN /\ A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < 1 ) ) -> ( ( x e. ( RR \ { 0 } ) |-> ( ( sin ` x ) / x ) ) o. F ) ~~> 1 ) | 
						
							| 19 | 7 18 | rexlimddv |  |-  ( ( F : NN --> ( RR \ { 0 } ) /\ F ~~> 0 ) -> ( ( x e. ( RR \ { 0 } ) |-> ( ( sin ` x ) / x ) ) o. F ) ~~> 1 ) |