Metamath Proof Explorer


Theorem sinccvg

Description: ( ( sinx ) / x ) ~> 1 as (real) x ~> 0 . (Contributed by Paul Chapman, 10-Nov-2012) (Proof shortened by Mario Carneiro, 21-May-2014)

Ref Expression
Assertion sinccvg ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → ( ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↦ ( ( sin ‘ 𝑥 ) / 𝑥 ) ) ∘ 𝐹 ) ⇝ 1 )

Proof

Step Hyp Ref Expression
1 nnuz ℕ = ( ℤ ‘ 1 )
2 1zzd ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → 1 ∈ ℤ )
3 1rp 1 ∈ ℝ+
4 3 a1i ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → 1 ∈ ℝ+ )
5 eqidd ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
6 simpr ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → 𝐹 ⇝ 0 )
7 1 2 4 5 6 climi0 ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐹𝑘 ) ) < 1 )
8 simpll ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐹𝑘 ) ) < 1 ) ) → 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) )
9 simplr ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐹𝑘 ) ) < 1 ) ) → 𝐹 ⇝ 0 )
10 eqid ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↦ ( ( sin ‘ 𝑥 ) / 𝑥 ) ) = ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↦ ( ( sin ‘ 𝑥 ) / 𝑥 ) )
11 eqid ( 𝑥 ∈ ℂ ↦ ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) )
12 simprl ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐹𝑘 ) ) < 1 ) ) → 𝑗 ∈ ℕ )
13 simprr ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐹𝑘 ) ) < 1 ) ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐹𝑘 ) ) < 1 )
14 2fveq3 ( 𝑘 = 𝑛 → ( abs ‘ ( 𝐹𝑘 ) ) = ( abs ‘ ( 𝐹𝑛 ) ) )
15 14 breq1d ( 𝑘 = 𝑛 → ( ( abs ‘ ( 𝐹𝑘 ) ) < 1 ↔ ( abs ‘ ( 𝐹𝑛 ) ) < 1 ) )
16 15 rspccva ( ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐹𝑘 ) ) < 1 ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → ( abs ‘ ( 𝐹𝑛 ) ) < 1 )
17 13 16 sylan ( ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐹𝑘 ) ) < 1 ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → ( abs ‘ ( 𝐹𝑛 ) ) < 1 )
18 8 9 10 11 12 17 sinccvglem ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐹𝑘 ) ) < 1 ) ) → ( ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↦ ( ( sin ‘ 𝑥 ) / 𝑥 ) ) ∘ 𝐹 ) ⇝ 1 )
19 7 18 rexlimddv ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → ( ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↦ ( ( sin ‘ 𝑥 ) / 𝑥 ) ) ∘ 𝐹 ) ⇝ 1 )