| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 2 |  | 1zzd | ⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  →  1  ∈  ℤ ) | 
						
							| 3 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  →  1  ∈  ℝ+ ) | 
						
							| 5 |  | eqidd | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  →  𝐹  ⇝  0 ) | 
						
							| 7 | 1 2 4 5 6 | climi0 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1 ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1 ) )  →  𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } ) ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1 ) )  →  𝐹  ⇝  0 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑥 )  /  𝑥 ) )  =  ( 𝑥  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑥  ∈  ℂ  ↦  ( 1  −  ( ( 𝑥 ↑ 2 )  /  3 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 1  −  ( ( 𝑥 ↑ 2 )  /  3 ) ) ) | 
						
							| 12 |  | simprl | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 13 |  | simprr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1 ) | 
						
							| 14 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑛  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 15 | 14 | breq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1  ↔  ( abs ‘ ( 𝐹 ‘ 𝑛 ) )  <  1 ) ) | 
						
							| 16 | 15 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑛 ) )  <  1 ) | 
						
							| 17 | 13 16 | sylan | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑛 ) )  <  1 ) | 
						
							| 18 | 8 9 10 11 12 17 | sinccvglem | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  1 ) )  →  ( ( 𝑥  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑥 )  /  𝑥 ) )  ∘  𝐹 )  ⇝  1 ) | 
						
							| 19 | 7 18 | rexlimddv | ⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  𝐹  ⇝  0 )  →  ( ( 𝑥  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑥 )  /  𝑥 ) )  ∘  𝐹 )  ⇝  1 ) |