Step |
Hyp |
Ref |
Expression |
1 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
2 |
|
1zzd |
⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → 1 ∈ ℤ ) |
3 |
|
1rp |
⊢ 1 ∈ ℝ+ |
4 |
3
|
a1i |
⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → 1 ∈ ℝ+ ) |
5 |
|
eqidd |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
6 |
|
simpr |
⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → 𝐹 ⇝ 0 ) |
7 |
1 2 4 5 6
|
climi0 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ) |
8 |
|
simpll |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ) ) → 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ) |
9 |
|
simplr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ) ) → 𝐹 ⇝ 0 ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↦ ( ( sin ‘ 𝑥 ) / 𝑥 ) ) = ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↦ ( ( sin ‘ 𝑥 ) / 𝑥 ) ) |
11 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 − ( ( 𝑥 ↑ 2 ) / 3 ) ) ) |
12 |
|
simprl |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ) ) → 𝑗 ∈ ℕ ) |
13 |
|
simprr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ) |
14 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑛 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
15 |
14
|
breq1d |
⊢ ( 𝑘 = 𝑛 → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ↔ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) < 1 ) ) |
16 |
15
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) < 1 ) |
17 |
13 16
|
sylan |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) < 1 ) |
18 |
8 9 10 11 12 17
|
sinccvglem |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 1 ) ) → ( ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↦ ( ( sin ‘ 𝑥 ) / 𝑥 ) ) ∘ 𝐹 ) ⇝ 1 ) |
19 |
7 18
|
rexlimddv |
⊢ ( ( 𝐹 : ℕ ⟶ ( ℝ ∖ { 0 } ) ∧ 𝐹 ⇝ 0 ) → ( ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↦ ( ( sin ‘ 𝑥 ) / 𝑥 ) ) ∘ 𝐹 ) ⇝ 1 ) |