Metamath Proof Explorer


Theorem sinccvg

Description: ( ( sinx ) / x ) ~> 1 as (real) x ~> 0 . (Contributed by Paul Chapman, 10-Nov-2012) (Proof shortened by Mario Carneiro, 21-May-2014)

Ref Expression
Assertion sinccvg F:0F0x0sinxxF1

Proof

Step Hyp Ref Expression
1 nnuz =1
2 1zzd F:0F01
3 1rp 1+
4 3 a1i F:0F01+
5 eqidd F:0F0kFk=Fk
6 simpr F:0F0F0
7 1 2 4 5 6 climi0 F:0F0jkjFk<1
8 simpll F:0F0jkjFk<1F:0
9 simplr F:0F0jkjFk<1F0
10 eqid x0sinxx=x0sinxx
11 eqid x1x23=x1x23
12 simprl F:0F0jkjFk<1j
13 simprr F:0F0jkjFk<1kjFk<1
14 2fveq3 k=nFk=Fn
15 14 breq1d k=nFk<1Fn<1
16 15 rspccva kjFk<1njFn<1
17 13 16 sylan F:0F0jkjFk<1njFn<1
18 8 9 10 11 12 17 sinccvglem F:0F0jkjFk<1x0sinxxF1
19 7 18 rexlimddv F:0F0x0sinxxF1