Description: ( ( sinx ) / x ) ~> 1 as (real) x ~> 0 . (Contributed by Paul Chapman, 10-Nov-2012) (Proof shortened by Mario Carneiro, 21-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | sinccvg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz | |
|
2 | 1zzd | |
|
3 | 1rp | |
|
4 | 3 | a1i | |
5 | eqidd | |
|
6 | simpr | |
|
7 | 1 2 4 5 6 | climi0 | |
8 | simpll | |
|
9 | simplr | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | simprl | |
|
13 | simprr | |
|
14 | 2fveq3 | |
|
15 | 14 | breq1d | |
16 | 15 | rspccva | |
17 | 13 16 | sylan | |
18 | 8 9 10 11 12 17 | sinccvglem | |
19 | 7 18 | rexlimddv | |