Metamath Proof Explorer


Theorem circum

Description: The circumference of a circle of radius R , defined as the limit as n ~> +oo of the perimeter of an inscribed n-sided isogons, is ( ( 2 x. _pi ) x. R ) . (Contributed by Paul Chapman, 10-Nov-2012) (Proof shortened by Mario Carneiro, 21-May-2014)

Ref Expression
Hypotheses circum.1 A = 2 π n
circum.2 P = n 2 n R sin A 2
circum.3 R
Assertion circum P 2 π R

Proof

Step Hyp Ref Expression
1 circum.1 A = 2 π n
2 circum.2 P = n 2 n R sin A 2
3 circum.3 R
4 nnuz = 1
5 1zzd 1
6 pirp π +
7 nnrp n n +
8 rpdivcl π + n + π n +
9 6 7 8 sylancr n π n +
10 9 rprene0d n π n π n 0
11 eldifsn π n 0 π n π n 0
12 10 11 sylibr n π n 0
13 12 adantl n π n 0
14 eqidd n π n = n π n
15 eqidd y 0 sin y y = y 0 sin y y
16 fveq2 y = π n sin y = sin π n
17 id y = π n y = π n
18 16 17 oveq12d y = π n sin y y = sin π n π n
19 13 14 15 18 fmptco y 0 sin y y n π n = n sin π n π n
20 eqid n π n = n π n
21 20 12 fmpti n π n : 0
22 pire π
23 22 recni π
24 divcnv π n π n 0
25 23 24 mp1i n π n 0
26 sinccvg n π n : 0 n π n 0 y 0 sin y y n π n 1
27 21 25 26 sylancr y 0 sin y y n π n 1
28 19 27 eqbrtrrd n sin π n π n 1
29 2re 2
30 29 22 remulcli 2 π
31 30 3 remulcli 2 π R
32 31 recni 2 π R
33 32 a1i 2 π R
34 nnex V
35 34 mptex n 2 n R sin A 2 V
36 2 35 eqeltri P V
37 36 a1i P V
38 eqid y 0 sin y y = y 0 sin y y
39 eldifi y 0 y
40 39 resincld y 0 sin y
41 eldifsni y 0 y 0
42 40 39 41 redivcld y 0 sin y y
43 38 42 fmpti y 0 sin y y : 0
44 fco y 0 sin y y : 0 n π n : 0 y 0 sin y y n π n :
45 43 21 44 mp2an y 0 sin y y n π n :
46 19 mptru y 0 sin y y n π n = n sin π n π n
47 46 feq1i y 0 sin y y n π n : n sin π n π n :
48 45 47 mpbi n sin π n π n :
49 48 ffvelrni k n sin π n π n k
50 49 adantl k n sin π n π n k
51 50 recnd k n sin π n π n k
52 29 recni 2
53 52 a1i k 2
54 23 a1i k π
55 nncn k k
56 55 adantl k k
57 nnne0 k k 0
58 57 adantl k k 0
59 53 54 56 58 divassd k 2 π k = 2 π k
60 59 oveq1d k 2 π k 2 = 2 π k 2
61 simpr k k
62 nndivre π k π k
63 22 61 62 sylancr k π k
64 63 recnd k π k
65 2ne0 2 0
66 65 a1i k 2 0
67 64 53 66 divcan3d k 2 π k 2 = π k
68 60 67 eqtrd k 2 π k 2 = π k
69 68 fveq2d k sin 2 π k 2 = sin π k
70 63 resincld k sin π k
71 70 recnd k sin π k
72 nnrp k k +
73 72 adantl k k +
74 rpdivcl π + k + π k +
75 6 73 74 sylancr k π k +
76 75 rpne0d k π k 0
77 71 64 76 divcan2d k π k sin π k π k = sin π k
78 69 77 eqtr4d k sin 2 π k 2 = π k sin π k π k
79 78 oveq2d k R sin 2 π k 2 = R π k sin π k π k
80 3 recni R
81 80 a1i k R
82 oveq2 n = k π n = π k
83 82 fveq2d n = k sin π n = sin π k
84 83 82 oveq12d n = k sin π n π n = sin π k π k
85 eqid n sin π n π n = n sin π n π n
86 ovex sin π k π k V
87 84 85 86 fvmpt k n sin π n π n k = sin π k π k
88 87 adantl k n sin π n π n k = sin π k π k
89 88 51 eqeltrrd k sin π k π k
90 81 64 89 mulassd k R π k sin π k π k = R π k sin π k π k
91 79 90 eqtr4d k R sin 2 π k 2 = R π k sin π k π k
92 91 oveq2d k 2 k R sin 2 π k 2 = 2 k R π k sin π k π k
93 mulcl 2 k 2 k
94 52 56 93 sylancr k 2 k
95 mulcl R π k R π k
96 80 64 95 sylancr k R π k
97 94 96 89 mulassd k 2 k R π k sin π k π k = 2 k R π k sin π k π k
98 53 56 81 64 mul4d k 2 k R π k = 2 R k π k
99 54 56 58 divcan2d k k π k = π
100 99 oveq2d k 2 R k π k = 2 R π
101 53 81 54 mul32d k 2 R π = 2 π R
102 100 101 eqtrd k 2 R k π k = 2 π R
103 98 102 eqtrd k 2 k R π k = 2 π R
104 103 oveq1d k 2 k R π k sin π k π k = 2 π R sin π k π k
105 92 97 104 3eqtr2d k 2 k R sin 2 π k 2 = 2 π R sin π k π k
106 oveq2 n = k 2 n = 2 k
107 oveq2 n = k 2 π n = 2 π k
108 1 107 syl5eq n = k A = 2 π k
109 108 oveq1d n = k A 2 = 2 π k 2
110 109 fveq2d n = k sin A 2 = sin 2 π k 2
111 110 oveq2d n = k R sin A 2 = R sin 2 π k 2
112 106 111 oveq12d n = k 2 n R sin A 2 = 2 k R sin 2 π k 2
113 ovex 2 k R sin 2 π k 2 V
114 112 2 113 fvmpt k P k = 2 k R sin 2 π k 2
115 114 adantl k P k = 2 k R sin 2 π k 2
116 88 oveq2d k 2 π R n sin π n π n k = 2 π R sin π k π k
117 105 115 116 3eqtr4d k P k = 2 π R n sin π n π n k
118 4 5 28 33 37 51 117 climmulc2 P 2 π R 1
119 118 mptru P 2 π R 1
120 32 mulid1i 2 π R 1 = 2 π R
121 119 120 breqtri P 2 π R