| Step | Hyp | Ref | Expression | 
						
							| 1 |  | circum.1 | ⊢ 𝐴  =  ( ( 2  ·  π )  /  𝑛 ) | 
						
							| 2 |  | circum.2 | ⊢ 𝑃  =  ( 𝑛  ∈  ℕ  ↦  ( ( 2  ·  𝑛 )  ·  ( 𝑅  ·  ( sin ‘ ( 𝐴  /  2 ) ) ) ) ) | 
						
							| 3 |  | circum.3 | ⊢ 𝑅  ∈  ℝ | 
						
							| 4 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 5 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 6 |  | pirp | ⊢ π  ∈  ℝ+ | 
						
							| 7 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 8 |  | rpdivcl | ⊢ ( ( π  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  →  ( π  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 9 | 6 7 8 | sylancr | ⊢ ( 𝑛  ∈  ℕ  →  ( π  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 10 | 9 | rprene0d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( π  /  𝑛 )  ∈  ℝ  ∧  ( π  /  𝑛 )  ≠  0 ) ) | 
						
							| 11 |  | eldifsn | ⊢ ( ( π  /  𝑛 )  ∈  ( ℝ  ∖  { 0 } )  ↔  ( ( π  /  𝑛 )  ∈  ℝ  ∧  ( π  /  𝑛 )  ≠  0 ) ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( 𝑛  ∈  ℕ  →  ( π  /  𝑛 )  ∈  ( ℝ  ∖  { 0 } ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( π  /  𝑛 )  ∈  ( ℝ  ∖  { 0 } ) ) | 
						
							| 14 |  | eqidd | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) ) | 
						
							| 15 |  | eqidd | ⊢ ( ⊤  →  ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) )  =  ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑦  =  ( π  /  𝑛 )  →  ( sin ‘ 𝑦 )  =  ( sin ‘ ( π  /  𝑛 ) ) ) | 
						
							| 17 |  | id | ⊢ ( 𝑦  =  ( π  /  𝑛 )  →  𝑦  =  ( π  /  𝑛 ) ) | 
						
							| 18 | 16 17 | oveq12d | ⊢ ( 𝑦  =  ( π  /  𝑛 )  →  ( ( sin ‘ 𝑦 )  /  𝑦 )  =  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) | 
						
							| 19 | 13 14 15 18 | fmptco | ⊢ ( ⊤  →  ( ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) )  ∘  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) | 
						
							| 21 | 20 12 | fmpti | ⊢ ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) : ℕ ⟶ ( ℝ  ∖  { 0 } ) | 
						
							| 22 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 23 | 22 | recni | ⊢ π  ∈  ℂ | 
						
							| 24 |  | divcnv | ⊢ ( π  ∈  ℂ  →  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) )  ⇝  0 ) | 
						
							| 25 | 23 24 | mp1i | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) )  ⇝  0 ) | 
						
							| 26 |  | sinccvg | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) : ℕ ⟶ ( ℝ  ∖  { 0 } )  ∧  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) )  ⇝  0 )  →  ( ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) )  ∘  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) )  ⇝  1 ) | 
						
							| 27 | 21 25 26 | sylancr | ⊢ ( ⊤  →  ( ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) )  ∘  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) )  ⇝  1 ) | 
						
							| 28 | 19 27 | eqbrtrrd | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) )  ⇝  1 ) | 
						
							| 29 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 30 | 29 22 | remulcli | ⊢ ( 2  ·  π )  ∈  ℝ | 
						
							| 31 | 30 3 | remulcli | ⊢ ( ( 2  ·  π )  ·  𝑅 )  ∈  ℝ | 
						
							| 32 | 31 | recni | ⊢ ( ( 2  ·  π )  ·  𝑅 )  ∈  ℂ | 
						
							| 33 | 32 | a1i | ⊢ ( ⊤  →  ( ( 2  ·  π )  ·  𝑅 )  ∈  ℂ ) | 
						
							| 34 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 35 | 34 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 2  ·  𝑛 )  ·  ( 𝑅  ·  ( sin ‘ ( 𝐴  /  2 ) ) ) ) )  ∈  V | 
						
							| 36 | 2 35 | eqeltri | ⊢ 𝑃  ∈  V | 
						
							| 37 | 36 | a1i | ⊢ ( ⊤  →  𝑃  ∈  V ) | 
						
							| 38 |  | eqid | ⊢ ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) )  =  ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) ) | 
						
							| 39 |  | eldifi | ⊢ ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  →  𝑦  ∈  ℝ ) | 
						
							| 40 | 39 | resincld | ⊢ ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  →  ( sin ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 41 |  | eldifsni | ⊢ ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  →  𝑦  ≠  0 ) | 
						
							| 42 | 40 39 41 | redivcld | ⊢ ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  →  ( ( sin ‘ 𝑦 )  /  𝑦 )  ∈  ℝ ) | 
						
							| 43 | 38 42 | fmpti | ⊢ ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) ) : ( ℝ  ∖  { 0 } ) ⟶ ℝ | 
						
							| 44 |  | fco | ⊢ ( ( ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) ) : ( ℝ  ∖  { 0 } ) ⟶ ℝ  ∧  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) : ℕ ⟶ ( ℝ  ∖  { 0 } ) )  →  ( ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) )  ∘  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 45 | 43 21 44 | mp2an | ⊢ ( ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) )  ∘  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) ) : ℕ ⟶ ℝ | 
						
							| 46 | 19 | mptru | ⊢ ( ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) )  ∘  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) | 
						
							| 47 | 46 | feq1i | ⊢ ( ( ( 𝑦  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ( sin ‘ 𝑦 )  /  𝑦 ) )  ∘  ( 𝑛  ∈  ℕ  ↦  ( π  /  𝑛 ) ) ) : ℕ ⟶ ℝ  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 48 | 45 47 | mpbi | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) : ℕ ⟶ ℝ | 
						
							| 49 | 48 | ffvelcdmi | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 51 | 50 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 52 | 29 | recni | ⊢ 2  ∈  ℂ | 
						
							| 53 | 52 | a1i | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  2  ∈  ℂ ) | 
						
							| 54 | 23 | a1i | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  π  ∈  ℂ ) | 
						
							| 55 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 57 |  | nnne0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ≠  0 ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ≠  0 ) | 
						
							| 59 | 53 54 56 58 | divassd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  π )  /  𝑘 )  =  ( 2  ·  ( π  /  𝑘 ) ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( 2  ·  π )  /  𝑘 )  /  2 )  =  ( ( 2  ·  ( π  /  𝑘 ) )  /  2 ) ) | 
						
							| 61 |  | simpr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 62 |  | nndivre | ⊢ ( ( π  ∈  ℝ  ∧  𝑘  ∈  ℕ )  →  ( π  /  𝑘 )  ∈  ℝ ) | 
						
							| 63 | 22 61 62 | sylancr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( π  /  𝑘 )  ∈  ℝ ) | 
						
							| 64 | 63 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( π  /  𝑘 )  ∈  ℂ ) | 
						
							| 65 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 66 | 65 | a1i | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  2  ≠  0 ) | 
						
							| 67 | 64 53 66 | divcan3d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  ( π  /  𝑘 ) )  /  2 )  =  ( π  /  𝑘 ) ) | 
						
							| 68 | 60 67 | eqtrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( 2  ·  π )  /  𝑘 )  /  2 )  =  ( π  /  𝑘 ) ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) )  =  ( sin ‘ ( π  /  𝑘 ) ) ) | 
						
							| 70 | 63 | resincld | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( sin ‘ ( π  /  𝑘 ) )  ∈  ℝ ) | 
						
							| 71 | 70 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( sin ‘ ( π  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 72 |  | nnrp | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ+ ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℝ+ ) | 
						
							| 74 |  | rpdivcl | ⊢ ( ( π  ∈  ℝ+  ∧  𝑘  ∈  ℝ+ )  →  ( π  /  𝑘 )  ∈  ℝ+ ) | 
						
							| 75 | 6 73 74 | sylancr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( π  /  𝑘 )  ∈  ℝ+ ) | 
						
							| 76 | 75 | rpne0d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( π  /  𝑘 )  ≠  0 ) | 
						
							| 77 | 71 64 76 | divcan2d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( π  /  𝑘 )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) )  =  ( sin ‘ ( π  /  𝑘 ) ) ) | 
						
							| 78 | 69 77 | eqtr4d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) )  =  ( ( π  /  𝑘 )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝑅  ·  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) )  =  ( 𝑅  ·  ( ( π  /  𝑘 )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) ) ) | 
						
							| 80 | 3 | recni | ⊢ 𝑅  ∈  ℂ | 
						
							| 81 | 80 | a1i | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑅  ∈  ℂ ) | 
						
							| 82 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( π  /  𝑛 )  =  ( π  /  𝑘 ) ) | 
						
							| 83 | 82 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( sin ‘ ( π  /  𝑛 ) )  =  ( sin ‘ ( π  /  𝑘 ) ) ) | 
						
							| 84 | 83 82 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) )  =  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) | 
						
							| 85 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) | 
						
							| 86 |  | ovex | ⊢ ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) )  ∈  V | 
						
							| 87 | 84 85 86 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) ‘ 𝑘 )  =  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) | 
						
							| 88 | 87 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) ‘ 𝑘 )  =  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) | 
						
							| 89 | 88 51 | eqeltrrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 90 | 81 64 89 | mulassd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑅  ·  ( π  /  𝑘 ) )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) )  =  ( 𝑅  ·  ( ( π  /  𝑘 )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) ) ) | 
						
							| 91 | 79 90 | eqtr4d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝑅  ·  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) )  =  ( ( 𝑅  ·  ( π  /  𝑘 ) )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) ) | 
						
							| 92 | 91 | oveq2d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  ·  ( 𝑅  ·  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) ) )  =  ( ( 2  ·  𝑘 )  ·  ( ( 𝑅  ·  ( π  /  𝑘 ) )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) ) ) | 
						
							| 93 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 2  ·  𝑘 )  ∈  ℂ ) | 
						
							| 94 | 52 56 93 | sylancr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℂ ) | 
						
							| 95 |  | mulcl | ⊢ ( ( 𝑅  ∈  ℂ  ∧  ( π  /  𝑘 )  ∈  ℂ )  →  ( 𝑅  ·  ( π  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 96 | 80 64 95 | sylancr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝑅  ·  ( π  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 97 | 94 96 89 | mulassd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( 2  ·  𝑘 )  ·  ( 𝑅  ·  ( π  /  𝑘 ) ) )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) )  =  ( ( 2  ·  𝑘 )  ·  ( ( 𝑅  ·  ( π  /  𝑘 ) )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) ) ) | 
						
							| 98 | 53 56 81 64 | mul4d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  ·  ( 𝑅  ·  ( π  /  𝑘 ) ) )  =  ( ( 2  ·  𝑅 )  ·  ( 𝑘  ·  ( π  /  𝑘 ) ) ) ) | 
						
							| 99 | 54 56 58 | divcan2d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  ( π  /  𝑘 ) )  =  π ) | 
						
							| 100 | 99 | oveq2d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑅 )  ·  ( 𝑘  ·  ( π  /  𝑘 ) ) )  =  ( ( 2  ·  𝑅 )  ·  π ) ) | 
						
							| 101 | 53 81 54 | mul32d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑅 )  ·  π )  =  ( ( 2  ·  π )  ·  𝑅 ) ) | 
						
							| 102 | 100 101 | eqtrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑅 )  ·  ( 𝑘  ·  ( π  /  𝑘 ) ) )  =  ( ( 2  ·  π )  ·  𝑅 ) ) | 
						
							| 103 | 98 102 | eqtrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  ·  ( 𝑅  ·  ( π  /  𝑘 ) ) )  =  ( ( 2  ·  π )  ·  𝑅 ) ) | 
						
							| 104 | 103 | oveq1d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( 2  ·  𝑘 )  ·  ( 𝑅  ·  ( π  /  𝑘 ) ) )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) )  =  ( ( ( 2  ·  π )  ·  𝑅 )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) ) | 
						
							| 105 | 92 97 104 | 3eqtr2d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  ·  ( 𝑅  ·  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) ) )  =  ( ( ( 2  ·  π )  ·  𝑅 )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) ) | 
						
							| 106 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 107 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ( 2  ·  π )  /  𝑛 )  =  ( ( 2  ·  π )  /  𝑘 ) ) | 
						
							| 108 | 1 107 | eqtrid | ⊢ ( 𝑛  =  𝑘  →  𝐴  =  ( ( 2  ·  π )  /  𝑘 ) ) | 
						
							| 109 | 108 | oveq1d | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴  /  2 )  =  ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) | 
						
							| 110 | 109 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( sin ‘ ( 𝐴  /  2 ) )  =  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) ) | 
						
							| 111 | 110 | oveq2d | ⊢ ( 𝑛  =  𝑘  →  ( 𝑅  ·  ( sin ‘ ( 𝐴  /  2 ) ) )  =  ( 𝑅  ·  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) ) ) | 
						
							| 112 | 106 111 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 2  ·  𝑛 )  ·  ( 𝑅  ·  ( sin ‘ ( 𝐴  /  2 ) ) ) )  =  ( ( 2  ·  𝑘 )  ·  ( 𝑅  ·  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) ) ) ) | 
						
							| 113 |  | ovex | ⊢ ( ( 2  ·  𝑘 )  ·  ( 𝑅  ·  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) ) )  ∈  V | 
						
							| 114 | 112 2 113 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑃 ‘ 𝑘 )  =  ( ( 2  ·  𝑘 )  ·  ( 𝑅  ·  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) ) ) ) | 
						
							| 115 | 114 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  =  ( ( 2  ·  𝑘 )  ·  ( 𝑅  ·  ( sin ‘ ( ( ( 2  ·  π )  /  𝑘 )  /  2 ) ) ) ) ) | 
						
							| 116 | 88 | oveq2d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( 2  ·  π )  ·  𝑅 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) ‘ 𝑘 ) )  =  ( ( ( 2  ·  π )  ·  𝑅 )  ·  ( ( sin ‘ ( π  /  𝑘 ) )  /  ( π  /  𝑘 ) ) ) ) | 
						
							| 117 | 105 115 116 | 3eqtr4d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  =  ( ( ( 2  ·  π )  ·  𝑅 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( sin ‘ ( π  /  𝑛 ) )  /  ( π  /  𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 118 | 4 5 28 33 37 51 117 | climmulc2 | ⊢ ( ⊤  →  𝑃  ⇝  ( ( ( 2  ·  π )  ·  𝑅 )  ·  1 ) ) | 
						
							| 119 | 118 | mptru | ⊢ 𝑃  ⇝  ( ( ( 2  ·  π )  ·  𝑅 )  ·  1 ) | 
						
							| 120 | 32 | mulridi | ⊢ ( ( ( 2  ·  π )  ·  𝑅 )  ·  1 )  =  ( ( 2  ·  π )  ·  𝑅 ) | 
						
							| 121 | 119 120 | breqtri | ⊢ 𝑃  ⇝  ( ( 2  ·  π )  ·  𝑅 ) |