| Step | Hyp | Ref | Expression | 
						
							| 1 |  | circum.1 |  |-  A = ( ( 2 x. _pi ) / n ) | 
						
							| 2 |  | circum.2 |  |-  P = ( n e. NN |-> ( ( 2 x. n ) x. ( R x. ( sin ` ( A / 2 ) ) ) ) ) | 
						
							| 3 |  | circum.3 |  |-  R e. RR | 
						
							| 4 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 5 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 6 |  | pirp |  |-  _pi e. RR+ | 
						
							| 7 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 8 |  | rpdivcl |  |-  ( ( _pi e. RR+ /\ n e. RR+ ) -> ( _pi / n ) e. RR+ ) | 
						
							| 9 | 6 7 8 | sylancr |  |-  ( n e. NN -> ( _pi / n ) e. RR+ ) | 
						
							| 10 | 9 | rprene0d |  |-  ( n e. NN -> ( ( _pi / n ) e. RR /\ ( _pi / n ) =/= 0 ) ) | 
						
							| 11 |  | eldifsn |  |-  ( ( _pi / n ) e. ( RR \ { 0 } ) <-> ( ( _pi / n ) e. RR /\ ( _pi / n ) =/= 0 ) ) | 
						
							| 12 | 10 11 | sylibr |  |-  ( n e. NN -> ( _pi / n ) e. ( RR \ { 0 } ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( T. /\ n e. NN ) -> ( _pi / n ) e. ( RR \ { 0 } ) ) | 
						
							| 14 |  | eqidd |  |-  ( T. -> ( n e. NN |-> ( _pi / n ) ) = ( n e. NN |-> ( _pi / n ) ) ) | 
						
							| 15 |  | eqidd |  |-  ( T. -> ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) = ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( y = ( _pi / n ) -> ( sin ` y ) = ( sin ` ( _pi / n ) ) ) | 
						
							| 17 |  | id |  |-  ( y = ( _pi / n ) -> y = ( _pi / n ) ) | 
						
							| 18 | 16 17 | oveq12d |  |-  ( y = ( _pi / n ) -> ( ( sin ` y ) / y ) = ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) | 
						
							| 19 | 13 14 15 18 | fmptco |  |-  ( T. -> ( ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) o. ( n e. NN |-> ( _pi / n ) ) ) = ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) ) | 
						
							| 20 |  | eqid |  |-  ( n e. NN |-> ( _pi / n ) ) = ( n e. NN |-> ( _pi / n ) ) | 
						
							| 21 | 20 12 | fmpti |  |-  ( n e. NN |-> ( _pi / n ) ) : NN --> ( RR \ { 0 } ) | 
						
							| 22 |  | pire |  |-  _pi e. RR | 
						
							| 23 | 22 | recni |  |-  _pi e. CC | 
						
							| 24 |  | divcnv |  |-  ( _pi e. CC -> ( n e. NN |-> ( _pi / n ) ) ~~> 0 ) | 
						
							| 25 | 23 24 | mp1i |  |-  ( T. -> ( n e. NN |-> ( _pi / n ) ) ~~> 0 ) | 
						
							| 26 |  | sinccvg |  |-  ( ( ( n e. NN |-> ( _pi / n ) ) : NN --> ( RR \ { 0 } ) /\ ( n e. NN |-> ( _pi / n ) ) ~~> 0 ) -> ( ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) o. ( n e. NN |-> ( _pi / n ) ) ) ~~> 1 ) | 
						
							| 27 | 21 25 26 | sylancr |  |-  ( T. -> ( ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) o. ( n e. NN |-> ( _pi / n ) ) ) ~~> 1 ) | 
						
							| 28 | 19 27 | eqbrtrrd |  |-  ( T. -> ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) ~~> 1 ) | 
						
							| 29 |  | 2re |  |-  2 e. RR | 
						
							| 30 | 29 22 | remulcli |  |-  ( 2 x. _pi ) e. RR | 
						
							| 31 | 30 3 | remulcli |  |-  ( ( 2 x. _pi ) x. R ) e. RR | 
						
							| 32 | 31 | recni |  |-  ( ( 2 x. _pi ) x. R ) e. CC | 
						
							| 33 | 32 | a1i |  |-  ( T. -> ( ( 2 x. _pi ) x. R ) e. CC ) | 
						
							| 34 |  | nnex |  |-  NN e. _V | 
						
							| 35 | 34 | mptex |  |-  ( n e. NN |-> ( ( 2 x. n ) x. ( R x. ( sin ` ( A / 2 ) ) ) ) ) e. _V | 
						
							| 36 | 2 35 | eqeltri |  |-  P e. _V | 
						
							| 37 | 36 | a1i |  |-  ( T. -> P e. _V ) | 
						
							| 38 |  | eqid |  |-  ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) = ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) | 
						
							| 39 |  | eldifi |  |-  ( y e. ( RR \ { 0 } ) -> y e. RR ) | 
						
							| 40 | 39 | resincld |  |-  ( y e. ( RR \ { 0 } ) -> ( sin ` y ) e. RR ) | 
						
							| 41 |  | eldifsni |  |-  ( y e. ( RR \ { 0 } ) -> y =/= 0 ) | 
						
							| 42 | 40 39 41 | redivcld |  |-  ( y e. ( RR \ { 0 } ) -> ( ( sin ` y ) / y ) e. RR ) | 
						
							| 43 | 38 42 | fmpti |  |-  ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) : ( RR \ { 0 } ) --> RR | 
						
							| 44 |  | fco |  |-  ( ( ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) : ( RR \ { 0 } ) --> RR /\ ( n e. NN |-> ( _pi / n ) ) : NN --> ( RR \ { 0 } ) ) -> ( ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) o. ( n e. NN |-> ( _pi / n ) ) ) : NN --> RR ) | 
						
							| 45 | 43 21 44 | mp2an |  |-  ( ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) o. ( n e. NN |-> ( _pi / n ) ) ) : NN --> RR | 
						
							| 46 | 19 | mptru |  |-  ( ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) o. ( n e. NN |-> ( _pi / n ) ) ) = ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) | 
						
							| 47 | 46 | feq1i |  |-  ( ( ( y e. ( RR \ { 0 } ) |-> ( ( sin ` y ) / y ) ) o. ( n e. NN |-> ( _pi / n ) ) ) : NN --> RR <-> ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) : NN --> RR ) | 
						
							| 48 | 45 47 | mpbi |  |-  ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) : NN --> RR | 
						
							| 49 | 48 | ffvelcdmi |  |-  ( k e. NN -> ( ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) ` k ) e. RR ) | 
						
							| 50 | 49 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) ` k ) e. RR ) | 
						
							| 51 | 50 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) ` k ) e. CC ) | 
						
							| 52 | 29 | recni |  |-  2 e. CC | 
						
							| 53 | 52 | a1i |  |-  ( ( T. /\ k e. NN ) -> 2 e. CC ) | 
						
							| 54 | 23 | a1i |  |-  ( ( T. /\ k e. NN ) -> _pi e. CC ) | 
						
							| 55 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 56 | 55 | adantl |  |-  ( ( T. /\ k e. NN ) -> k e. CC ) | 
						
							| 57 |  | nnne0 |  |-  ( k e. NN -> k =/= 0 ) | 
						
							| 58 | 57 | adantl |  |-  ( ( T. /\ k e. NN ) -> k =/= 0 ) | 
						
							| 59 | 53 54 56 58 | divassd |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. _pi ) / k ) = ( 2 x. ( _pi / k ) ) ) | 
						
							| 60 | 59 | oveq1d |  |-  ( ( T. /\ k e. NN ) -> ( ( ( 2 x. _pi ) / k ) / 2 ) = ( ( 2 x. ( _pi / k ) ) / 2 ) ) | 
						
							| 61 |  | simpr |  |-  ( ( T. /\ k e. NN ) -> k e. NN ) | 
						
							| 62 |  | nndivre |  |-  ( ( _pi e. RR /\ k e. NN ) -> ( _pi / k ) e. RR ) | 
						
							| 63 | 22 61 62 | sylancr |  |-  ( ( T. /\ k e. NN ) -> ( _pi / k ) e. RR ) | 
						
							| 64 | 63 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( _pi / k ) e. CC ) | 
						
							| 65 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 66 | 65 | a1i |  |-  ( ( T. /\ k e. NN ) -> 2 =/= 0 ) | 
						
							| 67 | 64 53 66 | divcan3d |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. ( _pi / k ) ) / 2 ) = ( _pi / k ) ) | 
						
							| 68 | 60 67 | eqtrd |  |-  ( ( T. /\ k e. NN ) -> ( ( ( 2 x. _pi ) / k ) / 2 ) = ( _pi / k ) ) | 
						
							| 69 | 68 | fveq2d |  |-  ( ( T. /\ k e. NN ) -> ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) = ( sin ` ( _pi / k ) ) ) | 
						
							| 70 | 63 | resincld |  |-  ( ( T. /\ k e. NN ) -> ( sin ` ( _pi / k ) ) e. RR ) | 
						
							| 71 | 70 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( sin ` ( _pi / k ) ) e. CC ) | 
						
							| 72 |  | nnrp |  |-  ( k e. NN -> k e. RR+ ) | 
						
							| 73 | 72 | adantl |  |-  ( ( T. /\ k e. NN ) -> k e. RR+ ) | 
						
							| 74 |  | rpdivcl |  |-  ( ( _pi e. RR+ /\ k e. RR+ ) -> ( _pi / k ) e. RR+ ) | 
						
							| 75 | 6 73 74 | sylancr |  |-  ( ( T. /\ k e. NN ) -> ( _pi / k ) e. RR+ ) | 
						
							| 76 | 75 | rpne0d |  |-  ( ( T. /\ k e. NN ) -> ( _pi / k ) =/= 0 ) | 
						
							| 77 | 71 64 76 | divcan2d |  |-  ( ( T. /\ k e. NN ) -> ( ( _pi / k ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) = ( sin ` ( _pi / k ) ) ) | 
						
							| 78 | 69 77 | eqtr4d |  |-  ( ( T. /\ k e. NN ) -> ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) = ( ( _pi / k ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) ) | 
						
							| 79 | 78 | oveq2d |  |-  ( ( T. /\ k e. NN ) -> ( R x. ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) ) = ( R x. ( ( _pi / k ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) ) ) | 
						
							| 80 | 3 | recni |  |-  R e. CC | 
						
							| 81 | 80 | a1i |  |-  ( ( T. /\ k e. NN ) -> R e. CC ) | 
						
							| 82 |  | oveq2 |  |-  ( n = k -> ( _pi / n ) = ( _pi / k ) ) | 
						
							| 83 | 82 | fveq2d |  |-  ( n = k -> ( sin ` ( _pi / n ) ) = ( sin ` ( _pi / k ) ) ) | 
						
							| 84 | 83 82 | oveq12d |  |-  ( n = k -> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) = ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) | 
						
							| 85 |  | eqid |  |-  ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) = ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) | 
						
							| 86 |  | ovex |  |-  ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) e. _V | 
						
							| 87 | 84 85 86 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) ` k ) = ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) | 
						
							| 88 | 87 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) ` k ) = ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) | 
						
							| 89 | 88 51 | eqeltrrd |  |-  ( ( T. /\ k e. NN ) -> ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) e. CC ) | 
						
							| 90 | 81 64 89 | mulassd |  |-  ( ( T. /\ k e. NN ) -> ( ( R x. ( _pi / k ) ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) = ( R x. ( ( _pi / k ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) ) ) | 
						
							| 91 | 79 90 | eqtr4d |  |-  ( ( T. /\ k e. NN ) -> ( R x. ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) ) = ( ( R x. ( _pi / k ) ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) ) | 
						
							| 92 | 91 | oveq2d |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) x. ( R x. ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) ) ) = ( ( 2 x. k ) x. ( ( R x. ( _pi / k ) ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) ) ) | 
						
							| 93 |  | mulcl |  |-  ( ( 2 e. CC /\ k e. CC ) -> ( 2 x. k ) e. CC ) | 
						
							| 94 | 52 56 93 | sylancr |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. k ) e. CC ) | 
						
							| 95 |  | mulcl |  |-  ( ( R e. CC /\ ( _pi / k ) e. CC ) -> ( R x. ( _pi / k ) ) e. CC ) | 
						
							| 96 | 80 64 95 | sylancr |  |-  ( ( T. /\ k e. NN ) -> ( R x. ( _pi / k ) ) e. CC ) | 
						
							| 97 | 94 96 89 | mulassd |  |-  ( ( T. /\ k e. NN ) -> ( ( ( 2 x. k ) x. ( R x. ( _pi / k ) ) ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) = ( ( 2 x. k ) x. ( ( R x. ( _pi / k ) ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) ) ) | 
						
							| 98 | 53 56 81 64 | mul4d |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) x. ( R x. ( _pi / k ) ) ) = ( ( 2 x. R ) x. ( k x. ( _pi / k ) ) ) ) | 
						
							| 99 | 54 56 58 | divcan2d |  |-  ( ( T. /\ k e. NN ) -> ( k x. ( _pi / k ) ) = _pi ) | 
						
							| 100 | 99 | oveq2d |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. R ) x. ( k x. ( _pi / k ) ) ) = ( ( 2 x. R ) x. _pi ) ) | 
						
							| 101 | 53 81 54 | mul32d |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. R ) x. _pi ) = ( ( 2 x. _pi ) x. R ) ) | 
						
							| 102 | 100 101 | eqtrd |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. R ) x. ( k x. ( _pi / k ) ) ) = ( ( 2 x. _pi ) x. R ) ) | 
						
							| 103 | 98 102 | eqtrd |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) x. ( R x. ( _pi / k ) ) ) = ( ( 2 x. _pi ) x. R ) ) | 
						
							| 104 | 103 | oveq1d |  |-  ( ( T. /\ k e. NN ) -> ( ( ( 2 x. k ) x. ( R x. ( _pi / k ) ) ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) = ( ( ( 2 x. _pi ) x. R ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) ) | 
						
							| 105 | 92 97 104 | 3eqtr2d |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) x. ( R x. ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) ) ) = ( ( ( 2 x. _pi ) x. R ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) ) | 
						
							| 106 |  | oveq2 |  |-  ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) | 
						
							| 107 |  | oveq2 |  |-  ( n = k -> ( ( 2 x. _pi ) / n ) = ( ( 2 x. _pi ) / k ) ) | 
						
							| 108 | 1 107 | eqtrid |  |-  ( n = k -> A = ( ( 2 x. _pi ) / k ) ) | 
						
							| 109 | 108 | oveq1d |  |-  ( n = k -> ( A / 2 ) = ( ( ( 2 x. _pi ) / k ) / 2 ) ) | 
						
							| 110 | 109 | fveq2d |  |-  ( n = k -> ( sin ` ( A / 2 ) ) = ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) ) | 
						
							| 111 | 110 | oveq2d |  |-  ( n = k -> ( R x. ( sin ` ( A / 2 ) ) ) = ( R x. ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) ) ) | 
						
							| 112 | 106 111 | oveq12d |  |-  ( n = k -> ( ( 2 x. n ) x. ( R x. ( sin ` ( A / 2 ) ) ) ) = ( ( 2 x. k ) x. ( R x. ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) ) ) ) | 
						
							| 113 |  | ovex |  |-  ( ( 2 x. k ) x. ( R x. ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) ) ) e. _V | 
						
							| 114 | 112 2 113 | fvmpt |  |-  ( k e. NN -> ( P ` k ) = ( ( 2 x. k ) x. ( R x. ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) ) ) ) | 
						
							| 115 | 114 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( P ` k ) = ( ( 2 x. k ) x. ( R x. ( sin ` ( ( ( 2 x. _pi ) / k ) / 2 ) ) ) ) ) | 
						
							| 116 | 88 | oveq2d |  |-  ( ( T. /\ k e. NN ) -> ( ( ( 2 x. _pi ) x. R ) x. ( ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) ` k ) ) = ( ( ( 2 x. _pi ) x. R ) x. ( ( sin ` ( _pi / k ) ) / ( _pi / k ) ) ) ) | 
						
							| 117 | 105 115 116 | 3eqtr4d |  |-  ( ( T. /\ k e. NN ) -> ( P ` k ) = ( ( ( 2 x. _pi ) x. R ) x. ( ( n e. NN |-> ( ( sin ` ( _pi / n ) ) / ( _pi / n ) ) ) ` k ) ) ) | 
						
							| 118 | 4 5 28 33 37 51 117 | climmulc2 |  |-  ( T. -> P ~~> ( ( ( 2 x. _pi ) x. R ) x. 1 ) ) | 
						
							| 119 | 118 | mptru |  |-  P ~~> ( ( ( 2 x. _pi ) x. R ) x. 1 ) | 
						
							| 120 | 32 | mulridi |  |-  ( ( ( 2 x. _pi ) x. R ) x. 1 ) = ( ( 2 x. _pi ) x. R ) | 
						
							| 121 | 119 120 | breqtri |  |-  P ~~> ( ( 2 x. _pi ) x. R ) |