Metamath Proof Explorer


Theorem clintopval

Description: The closed (internal binary) operations for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion clintopval MVclIntOpM=MM×M

Proof

Step Hyp Ref Expression
1 df-clintop clIntOp=mVmintOpm
2 id m=Mm=M
3 2 2 oveq12d m=MmintOpm=MintOpM
4 intopval MVMVMintOpM=MM×M
5 4 anidms MVMintOpM=MM×M
6 3 5 sylan9eqr MVm=MmintOpm=MM×M
7 elex MVMV
8 ovexd MVMM×MV
9 1 6 7 8 fvmptd2 MVclIntOpM=MM×M