Metamath Proof Explorer


Theorem clmabs

Description: Norm in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F=ScalarW
clmsub.k K=BaseF
Assertion clmabs WCModAKA=normFA

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 clmsub.k K=BaseF
3 1 2 clmsca WCModF=fld𝑠K
4 3 fveq2d WCModnormF=normfld𝑠K
5 4 adantr WCModAKnormF=normfld𝑠K
6 5 fveq1d WCModAKnormFA=normfld𝑠KA
7 1 2 clmsubrg WCModKSubRingfld
8 subrgsubg KSubRingfldKSubGrpfld
9 7 8 syl WCModKSubGrpfld
10 eqid fld𝑠K=fld𝑠K
11 cnfldnm abs=normfld
12 eqid normfld𝑠K=normfld𝑠K
13 10 11 12 subgnm2 KSubGrpfldAKnormfld𝑠KA=A
14 9 13 sylan WCModAKnormfld𝑠KA=A
15 6 14 eqtr2d WCModAKA=normFA