Metamath Proof Explorer


Theorem clsss3

Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis clscld.1 X=J
Assertion clsss3 JTopSXclsJSX

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 1 clscld JTopSXclsJSClsdJ
3 1 cldss clsJSClsdJclsJSX
4 2 3 syl JTopSXclsJSX