Metamath Proof Explorer


Theorem clwwlkneq0

Description: Sufficient conditions for ClWWalksN to be empty. (Contributed by Alexander van der Vekens, 15-Sep-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 24-Feb-2022)

Ref Expression
Assertion clwwlkneq0 GVNNClWWalksNG=

Proof

Step Hyp Ref Expression
1 df-nel GV¬GV
2 ianor ¬N0N0¬N0¬N0
3 1 2 orbi12i GV¬N0N0¬GV¬N0¬N0
4 df-nel N¬N
5 elnnne0 NN0N0
6 4 5 xchbinx N¬N0N0
7 6 orbi2i GVNGV¬N0N0
8 orass ¬GV¬N0¬N0¬GV¬N0¬N0
9 3 7 8 3bitr4i GVN¬GV¬N0¬N0
10 ianor ¬N0GV¬N0¬GV
11 orcom ¬N0¬GV¬GV¬N0
12 10 11 bitri ¬N0GV¬GV¬N0
13 df-clwwlkn ClWWalksN=n0,gVwClWWalksg|w=n
14 13 mpondm0 ¬N0GVNClWWalksNG=
15 12 14 sylbir ¬GV¬N0NClWWalksNG=
16 nne ¬N0N=0
17 oveq1 N=0NClWWalksNG=0ClWWalksNG
18 clwwlkn0 0ClWWalksNG=
19 17 18 eqtrdi N=0NClWWalksNG=
20 16 19 sylbi ¬N0NClWWalksNG=
21 15 20 jaoi ¬GV¬N0¬N0NClWWalksNG=
22 9 21 sylbi GVNNClWWalksNG=