| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nel |
|- ( G e/ _V <-> -. G e. _V ) |
| 2 |
|
ianor |
|- ( -. ( N e. NN0 /\ N =/= 0 ) <-> ( -. N e. NN0 \/ -. N =/= 0 ) ) |
| 3 |
1 2
|
orbi12i |
|- ( ( G e/ _V \/ -. ( N e. NN0 /\ N =/= 0 ) ) <-> ( -. G e. _V \/ ( -. N e. NN0 \/ -. N =/= 0 ) ) ) |
| 4 |
|
df-nel |
|- ( N e/ NN <-> -. N e. NN ) |
| 5 |
|
elnnne0 |
|- ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) |
| 6 |
4 5
|
xchbinx |
|- ( N e/ NN <-> -. ( N e. NN0 /\ N =/= 0 ) ) |
| 7 |
6
|
orbi2i |
|- ( ( G e/ _V \/ N e/ NN ) <-> ( G e/ _V \/ -. ( N e. NN0 /\ N =/= 0 ) ) ) |
| 8 |
|
orass |
|- ( ( ( -. G e. _V \/ -. N e. NN0 ) \/ -. N =/= 0 ) <-> ( -. G e. _V \/ ( -. N e. NN0 \/ -. N =/= 0 ) ) ) |
| 9 |
3 7 8
|
3bitr4i |
|- ( ( G e/ _V \/ N e/ NN ) <-> ( ( -. G e. _V \/ -. N e. NN0 ) \/ -. N =/= 0 ) ) |
| 10 |
|
ianor |
|- ( -. ( N e. NN0 /\ G e. _V ) <-> ( -. N e. NN0 \/ -. G e. _V ) ) |
| 11 |
|
orcom |
|- ( ( -. N e. NN0 \/ -. G e. _V ) <-> ( -. G e. _V \/ -. N e. NN0 ) ) |
| 12 |
10 11
|
bitri |
|- ( -. ( N e. NN0 /\ G e. _V ) <-> ( -. G e. _V \/ -. N e. NN0 ) ) |
| 13 |
|
df-clwwlkn |
|- ClWWalksN = ( n e. NN0 , g e. _V |-> { w e. ( ClWWalks ` g ) | ( # ` w ) = n } ) |
| 14 |
13
|
mpondm0 |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( N ClWWalksN G ) = (/) ) |
| 15 |
12 14
|
sylbir |
|- ( ( -. G e. _V \/ -. N e. NN0 ) -> ( N ClWWalksN G ) = (/) ) |
| 16 |
|
nne |
|- ( -. N =/= 0 <-> N = 0 ) |
| 17 |
|
oveq1 |
|- ( N = 0 -> ( N ClWWalksN G ) = ( 0 ClWWalksN G ) ) |
| 18 |
|
clwwlkn0 |
|- ( 0 ClWWalksN G ) = (/) |
| 19 |
17 18
|
eqtrdi |
|- ( N = 0 -> ( N ClWWalksN G ) = (/) ) |
| 20 |
16 19
|
sylbi |
|- ( -. N =/= 0 -> ( N ClWWalksN G ) = (/) ) |
| 21 |
15 20
|
jaoi |
|- ( ( ( -. G e. _V \/ -. N e. NN0 ) \/ -. N =/= 0 ) -> ( N ClWWalksN G ) = (/) ) |
| 22 |
9 21
|
sylbi |
|- ( ( G e/ _V \/ N e/ NN ) -> ( N ClWWalksN G ) = (/) ) |