Metamath Proof Explorer


Theorem clwwlknfi

Description: If there is only a finite number of vertices, the number of closed walks of fixed length (as words) is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 25-Apr-2021) (Proof shortened by AV, 22-Mar-2022) (Proof shortened by JJ, 18-Nov-2022)

Ref Expression
Assertion clwwlknfi VtxGFinNClWWalksNGFin

Proof

Step Hyp Ref Expression
1 clwwlkn NClWWalksNG=wClWWalksG|w=N
2 wrdnfi VtxGFinwWordVtxG|w=NFin
3 clwwlksswrd ClWWalksGWordVtxG
4 rabss2 ClWWalksGWordVtxGwClWWalksG|w=NwWordVtxG|w=N
5 3 4 mp1i VtxGFinwClWWalksG|w=NwWordVtxG|w=N
6 2 5 ssfid VtxGFinwClWWalksG|w=NFin
7 1 6 eqeltrid VtxGFinNClWWalksNGFin