Metamath Proof Explorer


Theorem cmbr3i

Description: Alternate definition for the commutes relation. Lemma 3 of Kalmbach p. 23. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 AC
pjoml2.2 BC
Assertion cmbr3i A𝐶BAAB=AB

Proof

Step Hyp Ref Expression
1 pjoml2.1 AC
2 pjoml2.2 BC
3 1 2 cmcmi A𝐶BB𝐶A
4 2 1 cmbr2i B𝐶AB=BABA
5 3 4 bitri A𝐶BB=BABA
6 ineq2 B=BABAAB=ABABA
7 inass ABABA=ABABA
8 2 1 chjcomi BA=AB
9 8 ineq2i ABA=AAB
10 1 2 chabs2i AAB=A
11 9 10 eqtri ABA=A
12 1 choccli AC
13 2 12 chjcomi BA=AB
14 11 13 ineq12i ABABA=AAB
15 7 14 eqtr3i ABABA=AAB
16 6 15 eqtr2di B=BABAAAB=AB
17 5 16 sylbi A𝐶BAAB=AB
18 inss1 ABA
19 2 choccli BC
20 1 19 chincli ABC
21 20 1 pjoml2i ABAABABA=A
22 18 21 ax-mp ABABA=A
23 20 choccli ABC
24 23 1 chincli ABAC
25 20 24 chjcomi ABABA=ABAAB
26 22 25 eqtr3i A=ABAAB
27 1 2 chdmm3i AB=AB
28 27 ineq2i AAB=AAB
29 incom AAB=ABA
30 28 29 eqtr3i AAB=ABA
31 30 eqeq1i AAB=ABABA=AB
32 oveq1 ABA=ABABAAB=ABAB
33 31 32 sylbi AAB=ABABAAB=ABAB
34 26 33 eqtrid AAB=ABA=ABAB
35 1 2 cmbri A𝐶BA=ABAB
36 34 35 sylibr AAB=ABA𝐶B
37 17 36 impbii A𝐶BAAB=AB