Metamath Proof Explorer


Theorem cmcmlem

Description: Commutation is symmetric. Theorem 3.4 of Beran p. 45. (Contributed by NM, 3-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 AC
pjoml2.2 BC
Assertion cmcmlem A𝐶BB𝐶A

Proof

Step Hyp Ref Expression
1 pjoml2.1 AC
2 pjoml2.2 BC
3 1 choccli AC
4 2 3 chub2i BAB
5 sseqin2 BABABB=B
6 4 5 mpbi ABB=B
7 6 ineq2i ABABB=ABB
8 inass ABABB=ABABB
9 1 2 chdmm1i AB=AB
10 9 ineq1i ABB=ABB
11 7 8 10 3eqtr4ri ABB=ABABB
12 1 2 chdmj4i AB=AB
13 1 2 chdmj2i AB=AB
14 12 13 oveq12i ABAB=ABAB
15 14 eqeq2i A=ABABA=ABAB
16 15 biimpri A=ABABA=ABAB
17 16 fveq2d A=ABABA=ABAB
18 2 choccli BC
19 3 18 chjcli ABC
20 3 2 chjcli ABC
21 19 20 chdmj4i ABAB=ABAB
22 17 21 eqtr2di A=ABABABAB=A
23 22 ineq1d A=ABABABABB=AB
24 11 23 eqtrid A=ABABABB=AB
25 24 oveq2d A=ABABABABB=ABAB
26 inss2 ABB
27 1 2 chincli ABC
28 27 2 pjoml2i ABBABABB=B
29 26 28 ax-mp ABABB=B
30 incom AB=BA
31 incom AB=BA
32 30 31 oveq12i ABAB=BABA
33 25 29 32 3eqtr3g A=ABABB=BABA
34 1 2 cmbri A𝐶BA=ABAB
35 2 1 cmbri B𝐶AB=BABA
36 33 34 35 3imtr4i A𝐶BB𝐶A